直線l:ax-y+b=0與圓M:x2+y2-2ax+2by=0,則l與M在同一坐標系內(nèi)的圖形可能是( 。
A、
B、
C、
D、
考點:曲線與方程
專題:直線與圓
分析:圓M:x2+y2-2ax+2by=0的標準方程為:(x-a)2+(y+b)2=a2+b2,圓心M(a,-b),通過a,b的符號判斷選項即可.
解答: 解:圓M:x2+y2-2ax+2by=0的標準方程為:(x-a)2+(y+b)2=a2+b2,
圓心M(a,-b),半徑
a2+b2

直線l:ax-y+b=0的斜率為:a,y軸上的截距為:b,
對于A,由直線方程可知:a>0,b>0,圓心M(a,-b),滿足題意,但是圓與y軸不相交,圖形不滿足題意,A不正確;
對于B,由直線方程可知:a>0,b<0,圓心M(a,-b),滿足題意,但是圓與x,y軸相交,圖形滿足題意,所以B正確;
對于C,由直線方程可知:a<0,b>0,圓心M(a,-b),不滿足題意,圖形不滿足題意,所以C不正確;
對于D,由直線方程可知:a<0,b<0,圓心M(a,-b),不滿足題意,圖形不滿足題意,所以D不正確;
故選:B.
點評:本題考查直線與圓的位置關(guān)系的應(yīng)用,是中檔題,解題時要注意圓的性質(zhì)的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x1,x2是函數(shù)f(x)=ax2+(b-1)x+1(a,b∈R,a>0)的兩個零點
(1)如果x1<2<x2<4,求f(-2)的取值范圍;
(2)如果1<x1<2,x2-x1=2,求證:b<
1
4
;
(3)如果a≥2,x2-x1=2,且x∈(x1,x2),函數(shù)g(x)=-f(x)+2(x2-x)的最大值為h(a),求h(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有5位教師在同一年級的5個班中監(jiān)考,要求每位教師不能監(jiān)考本班,監(jiān)考方法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四面體PABC的四個頂點P,A,B,C均在球O的表面上,且AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC,則球O的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
4
+
y2
3
=1,過點(1,0)作傾斜角為45°的直線l交橢圓于A、B兩點,O為坐標原點,則△AOB的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的右焦點為F,且雙曲線焦點在x軸,若過點F且傾斜角為60°的直線與曲線的右支僅有一個交點,則此雙曲線的離心率的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有一個由36名游客組成的旅游團到上海參觀旅游,其中
3
4
是境外游客,其余是境內(nèi)游客.在境外游客中有
1
3
持旅游金卡,在境內(nèi)游客中有
2
3
持旅游銀卡,其余游客都未持金、銀卡.
(1)在該團中隨機采訪3名游客,求恰有1人持金卡且少于2人持銀卡的概率;
(2)在該團的境內(nèi)游客中隨機采訪3名游客,設(shè)采訪到不持銀卡人數(shù)為隨機變量X,求隨機變量X的分布列和均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(3,-2),
b
=(-2,1),
c
=(7,-4),試用
a
b
來表示
c
,下面正確的表述是( 。
A、
c
=
a
-2
b
B、
c
=5
a
-3
b
C、
c
=2
a
-
b
D、
c
=2
a
+
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

按如表的規(guī)律,2014應(yīng)當(dāng)在(  )
  第一列 第二列 第三列 第四列 第五列
 第一行  2 4 6 8
  16 14 1210  
   18 20 22 24
  32 30 28 26 
A、第252行,第2列
B、第252行,第3列
C、第253行,第3列
D、第253行,第4列

查看答案和解析>>

同步練習(xí)冊答案