【題目】某校從高一年級的一次月考成績中隨機抽取了名學(xué)生的成績(滿分分),這名學(xué)生的成績都在內(nèi),按成績分為,,,,五組,得到如圖所示的頻率分布直方圖.
(1)求圖中的值;
(2)假設(shè)同組中的每個數(shù)據(jù)都用該組區(qū)間的中點值代替,估計該校高一年級本次考試成績的平均分;
(3)用分層抽樣的方法從成績在內(nèi)的學(xué)生中抽取人,再從這人中隨機抽取名學(xué)生進(jìn)行調(diào)查,求月考成績在內(nèi)至少有名學(xué)生被抽到的概率.
【答案】(1);(2);(3).
【解析】
(1)利用頻率分布直方圖各矩形面積之和為可求出實數(shù)的值;
(2)將每個矩形底邊中點值與各矩形面積相乘,再將所得數(shù)據(jù)相加即可得出結(jié)果;
(3)由題意可知,所抽取的人中成績位于有人,分別記為、、、,成績位于有人,分別記為、,列舉出所有的基本事件,并確定所求事件所包含的基本事件數(shù),最后利用古典概型的概率公式可求出概率.
(1)各矩形面積之和為,,
解得:;
(2),
即估計該校高一年級本次考試成績的平均分為分;
(3)分?jǐn)?shù)落在內(nèi)的學(xué)生人數(shù)為人,分?jǐn)?shù)落在內(nèi)的學(xué)生人數(shù)為人,因為要抽取人樣本,所以抽樣比例為.
所以分?jǐn)?shù)落在內(nèi)的人中抽取人,分?jǐn)?shù)落在內(nèi)的人中抽取人.
設(shè)分?jǐn)?shù)落在內(nèi)人為、、、,分?jǐn)?shù)落在內(nèi)的人為、,則從人中抽取人所構(gòu)成的樣本空間為:,共個基本事件.
設(shè)事件“從這人中隨機抽取名學(xué)生,月考成績在內(nèi)至少有名學(xué)生”,則事件包含的基本事件有、、、、、、、、,共個,.
即從這人中隨機抽取名學(xué)生進(jìn)行調(diào)查,月考成績在內(nèi)至少有名學(xué)生被抽到的概率為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,,令.
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間及極值;
(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車是城市慢行系統(tǒng)的一種創(chuàng)新模式,對于解決民眾出行“最后一公里”的問題特別見效,由于停取方便、租用價格低廉,各色共享單車受到人們的熱捧.某自行車廠為共享單車公司生產(chǎn)新樣式的單車,已知生產(chǎn)新樣式單車的固定成本為20 000元,每生產(chǎn)一輛新樣式單車需要增加投入100元.根據(jù)初步測算,自行車廠的總收益(單位:元)滿足分段函數(shù) 其中x是新樣式單車的月產(chǎn)量(單位:輛),利潤=總收益-總成本.
(1)試將自行車廠的利潤y元表示為月產(chǎn)量x的函數(shù);
(2)當(dāng)月產(chǎn)量為多少件時自行車廠的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系,將曲線上的每一個點的橫坐標(biāo)保持不變,縱坐標(biāo)縮短為原來的,得到曲線,以坐標(biāo)原點為極點, 軸的正半軸為極軸,建立極坐標(biāo)系, 的極坐標(biāo)方程為.
(Ⅰ)求曲線的參數(shù)方程;
(Ⅱ)過原點且關(guān)于軸對稱的兩條直線與分別交曲線于、和、,且點在第一象限,當(dāng)四邊形的周長最大時,求直線的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校研究性學(xué)習(xí)小組調(diào)查學(xué)生使用智能手機對學(xué)習(xí)成績的影響,部分統(tǒng)計數(shù)據(jù)如下表:
使用智能手機 | 不使用智能手機 | 總計 | |
學(xué)習(xí)成績優(yōu)秀 | 4 | 8 | 12 |
學(xué)習(xí)成績不優(yōu)秀 | 16 | 2 | 18 |
總計 | 20 | 10 | 30 |
(Ⅰ)根據(jù)以上列聯(lián)表判斷,能否在犯錯誤的概率不超過0.005的前提下認(rèn)為使用智能手機對學(xué)習(xí)成績有影響?
(Ⅱ)從學(xué)習(xí)成績優(yōu)秀的12名同學(xué)中,隨機抽取2名同學(xué),求抽到不使用智能手機的人數(shù)的分布列及數(shù)學(xué)期望.
參考公式:,其中
參考數(shù)據(jù):
0.05 | 0,。025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的偶函數(shù)和奇函數(shù),且.
(1)求函數(shù),的解析式;
(2)設(shè)函數(shù),記 .探究是否存在正整數(shù),使得對任意的,不等式恒成立?若存在,求出所有滿足條件的正整數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .若g(x)存在2個零點,則a的取值范圍是
A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行了分析研究,分別記錄了2016年12月1日至12月5日每天的晝夜溫差以及實驗室100顆種子中的發(fā)芽數(shù),得到的數(shù)據(jù)如下表所示:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差x/℃ | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y/顆 | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取兩組,用剩下的三組數(shù)據(jù)求線性回歸方程,再對被選取的兩組數(shù)據(jù)進(jìn)行檢驗.
(1)求選取的兩組數(shù)據(jù)恰好是不相鄰的兩天數(shù)據(jù)的概率.
(2)若選取的是12月1日和12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程.
(3)由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2,則認(rèn)為得到的線性回歸方程是可靠的,據(jù)此說明(2)中所得線性回歸方程是否可靠?并估計當(dāng)溫差為9 ℃時,100顆種子中的發(fā)芽數(shù).
附:回歸方程中斜率和截距的最小二乘法估計公式分別為: ,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com