設(shè)不等式組
x≥1
y≤2
y≥x
所表示的平面區(qū)域是Ω1,平面區(qū)域Ω2與平面區(qū)域Ω1關(guān)于直線3x-4y-9=0對(duì)稱,對(duì)于Ω1中的任意一點(diǎn)A與Ω2中的任意一點(diǎn)B,|AB|的最小值等于
 
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:根據(jù)已知的約束條件畫出滿足約束條件的可行域Ω1,根據(jù)對(duì)稱的性質(zhì),不難得到:當(dāng)A點(diǎn)距對(duì)稱軸的距離最近時(shí),|AB|有最小值.
解答: 解:作出不等式組對(duì)應(yīng)的平面區(qū)域Ω1,(陰影部分CDE),
∵平面區(qū)域是Ω2與Ω1關(guān)于直線3x-4y-9=0對(duì)稱,
∴要使AB的距離最小,則只需點(diǎn)A到直線3x-4y-9=0的距離最小即可,
由圖象可知當(dāng)點(diǎn)A位于點(diǎn)E時(shí),A到直線3x-4y-9=0的距離最小,
x=1
y=x
,解得
x=1
y=1
,即E(1,1),
此時(shí)E到直線3x-4y-9=0的距離d=
|3-4-9|
32+42
=
10
5
=2

∴AB的最小值為2d=2×2=4,
故答案為:4.
點(diǎn)評(píng):利用線性規(guī)劃解平面上任意兩點(diǎn)的距離的最值,關(guān)鍵是要根據(jù)已知的約束條件,畫出滿足約束約束條件的可行域,再去分析圖形,根據(jù)圖形的性質(zhì)、對(duì)稱的性質(zhì)等找出滿足條件的點(diǎn)的坐標(biāo),代入計(jì)算,即可求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于實(shí)數(shù)x,當(dāng)且僅當(dāng)n≤x<n+1時(shí),n∈N*,[x]=n,則不等式4[x]2-36[x]+45<0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等腰△ABC中,AC=BC,延長(zhǎng)BC到D,使AD⊥AB,若
AD
AB
AC
,則λ-μ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)=
1
2
sin(ωx+
π
6
)與g(x)=3cos(2x+φ)的圖象的對(duì)稱軸完全相同,則ω=
 
,φ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若正數(shù)x,y滿足2xy-x-6y=5,則x+y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若橢圓的中心在原點(diǎn),長(zhǎng)軸長(zhǎng)為10,一個(gè)焦點(diǎn)坐標(biāo)為(-3,0),則該橢圓的標(biāo)準(zhǔn)方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在斜△ABC中,角A,B,C的對(duì)邊分別為 a,b,c.若2sinAcosC=sinB,則△ABC為
 
三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

五個(gè)數(shù)1,2,3,4,5的方差等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={y||y-1|≤2},N={x|log2x<2},則M∩N=(  )
A、{x|0<x≤3}
B、{x|-1≤x≤3}
C、{x|0<x<4}
D、{x|-1≤x≤4}

查看答案和解析>>

同步練習(xí)冊(cè)答案