【題目】如圖,已知圓G:x2﹣x+y2=0,經(jīng)過(guò)拋物線y2=2px的焦點(diǎn),過(guò)點(diǎn)(m,0)(m<0)傾斜角為 的直線l交拋物線于C,D兩點(diǎn). (Ⅰ)求拋物線的方程;
(Ⅱ)若焦點(diǎn)F在以線段CD為直徑的圓E的外部,求m的取值范圍.
【答案】解:(Ⅰ)∵圓G:x2﹣x+y2=0與x軸交于(0,0),(1,0), 圓G:x2﹣x+y2=0,經(jīng)過(guò)拋物線y2=2px的焦點(diǎn),
∴拋物線y2=2px的焦點(diǎn)F(1,0),
∴拋物線的方程為:y2=4x.
(Ⅱ)設(shè)C(x1 , y1),D(x2 , y2),
∵ ,則(x1﹣1)(x2﹣1)+y1y2>0,
設(shè)l的方程為: ,
于是
即
由 ,得x2﹣(2m+12)x+m2=0,
∴ ,
于是 ,
故 ,
又△=(2m+12)2﹣4m2>0,得到m>﹣3.
∴ 或m>2 .
【解析】(Ⅰ)圓G:x2﹣x+y2=0與x軸交于(0,0),(1,0),從而拋物線y2=2px的焦點(diǎn)F(1,0),由此能求出拋物線的方程.(Ⅱ)設(shè)C(x1 , y1),D(x2 , y2),則(x1﹣1)(x2﹣1)+y1y2>0,設(shè)l的方程為: ,則 ,由 ,得x2﹣(2m+12)x+m2=0,由此利用韋達(dá)定理結(jié)合已知條件能求出m的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的幾何體中,四邊形ABCD是矩形,平面ABCD⊥平面ABE,已知AB=2,AE=BE= ,且當(dāng)規(guī)定正視圖方向垂直平面ABCD時(shí),該幾何體的側(cè)視圖的面積為 .若M,N分別是線段DE、CE上的動(dòng)點(diǎn),則AM+MN+NB的最小值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在幾何體P﹣ABCD中,平面ABCD⊥平面PAB,四邊形ABCD為矩形,△PAB為正三角形,若AB=2,AD=1,E,F(xiàn) 分別為AC,BP中點(diǎn).
(Ⅰ)求證EF∥平面PCD;
(Ⅱ)求直線DP與平面ABCD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)的定義域?yàn)閇﹣1,2],則函數(shù)g(x)=f(2x﹣ )的定義域?yàn)椋?/span> )
A.[ , ]
B.[1, ]
C.[﹣1, ]
D.[﹣1, ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A={y|2<y<3},B={x|( ) <22(x+1)}.
(1)求A∩B;
(2)求C={x|x∈B且xA}.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某青少年成長(zhǎng)關(guān)愛(ài)機(jī)構(gòu)為了調(diào)研所在地區(qū)青少年的年齡與身高壯況,隨機(jī)抽取6歲,9歲,12歲,15歲,18歲的青少年身高數(shù)據(jù)各1000個(gè),根據(jù)各年齡段平均身高作出如圖所示的散點(diǎn)圖和回歸直線.根據(jù)圖中數(shù)據(jù),下列對(duì)該樣本描述錯(cuò)誤的是( )
A. 據(jù)樣本數(shù)據(jù)估計(jì),該地區(qū)青少年身高與年齡成正相關(guān)
B. 所抽取數(shù)據(jù)中,5000名青少年平均身高約為
C. 直線的斜率的值近似等于樣本中青少年平均身高每年的增量
D. 從這5種年齡的青少年中各取一人的身高數(shù)據(jù),由這5人的平均年齡和平均身高數(shù)據(jù)作出的點(diǎn)一定在直線上
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若二面角α﹣L﹣β的大小為 ,此二面角的張口內(nèi)有一點(diǎn)P到α、β的距離分別為1和2,則P點(diǎn)到棱l的距離是( )
A.
B.2
C.2
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+2ax+3.
(1)若f(x)在(﹣∞, ]是減函數(shù),在[ ,+∞)是增函數(shù),求函數(shù)f(x)在區(qū)間[﹣1,5]的最大值和最小值.
(2)求實(shí)數(shù)a的取值范圍,使f(x)在區(qū)間[﹣5,5]上是單調(diào)函數(shù),并指出相應(yīng)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知F1 , F2分別為雙曲線C: =1的左、右焦點(diǎn),若存在過(guò)F1的直線分別交雙曲線C的左、右支于A,B兩點(diǎn),使得∠BAF2=∠BF2F1 , 則雙曲線C的離心率e的取值范圍是( )
A.(3,+∞)
B.(1,2+ )
C.(3,2+ )
D.(1,3)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com