精英家教網 > 高中數學 > 題目詳情

【題目】近年空氣質量逐步惡化,霧霾天氣現象出現增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾。疄榱私饽呈行姆渭膊∈欠衽c性別有關,在某醫(yī)院隨機的對入院50人進行了問卷調查得到了如下的列聯(lián)表:

患心肺疾病

不患心肺疾病

合計

5

10

合計

50

已知在全部50人中隨機抽取1人,抽到患心肺疾病的人的概率為

(1)請將上面的列聯(lián)表補充完整;

(2)是否有99.5%的把握認為患心肺疾病與性別有關?說明你的理由;

下面的臨界值表供參考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式 其中

【答案】(1)20|25|15|25|30|20;(2)見解析.

【解析】

1)根據題意補充列聯(lián)表。

2)根據獨立性簡單求得K2值,再與標準值比較即可判斷。

(1)補充列聯(lián)表如下圖

患心肺疾病

不患心肺疾病

合計

20

5

25

10

15

25

合計

30

20

50

(2)因為 ,所以K2≈8.333

P(k2≥7.789)=0.005=0.5%.那么,我們有99.5%的把握認為患心肺疾病與性別有關

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】(本小題10分)選修4—4:坐標系與參數方程

已知曲線C1的參數方程為t為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2sinθ。

)把C1的參數方程化為極坐標方程;

)求C1C2交點的極坐標(ρ≥0,0≤θ

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】國家規(guī)定,疫苗在上市前必須經過嚴格的檢測,并通過臨床實驗獲得相關數據,以保證疫苗使用的安全和有效.某生物制品硏究所將某一型號疫苗用在動物小白鼠身上進行科研和臨床實驗,得到統(tǒng)計數據如下:

未感染病毒

感染病毒

總計

未注射疫苗

40

注射疫苗

60

總計

100

100

200

現從未注射疫苗的小白鼠中任取1只,取到“感染病毒”的小白鼠的概率為.

(Ⅰ)求列聯(lián)表中的數據,,的值;

(Ⅱ)能否有把握認為注射此種疫苗有效?

(Ⅲ)在感染病毒的小白鼠中,按未注射疫苗和注射疫苗的比例抽取5只進行病例分析,然后從這五只小白鼠中隨機抽取3只對注射疫苗情況進行核實,求至少抽到2只為未注射疫苗的小白鼠的概率.

附:.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在如圖所示的空間幾何體中,平面平面,是邊長為2的等邊三角形,BE和平面ABC所成的角為,且點E在平面ABC上的射影落在的平分線上.

1)求證:平面ABC;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知|x|≤2,|y|≤2,P的坐標為(x,y).

(1)求當x,yR,P滿足(x-2)2+(y-2)2≤4的概率.

(2)求當x,yZ,P滿足(x-2)2+(y-2)2≤4的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數方程為 為參數),以原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線的公共點為.

求直線的斜率;

Ⅱ)若點分別為曲線上的動點,當取最大值時,求四邊形的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】1)已知實數,,則的最小值是______

2)正項等比數列中,存在兩項使得,且,則的最小值為______.

3)設正實數滿足,則的最小值為_______

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,且經過點

求橢圓的標準方程;

已知拋物線的焦點與橢圓的右焦點重合,過點的動直線與拋物線相交于A,B兩個不同的點,在線段AB上取點Q,滿足,證明:點Q總在定直線上.

查看答案和解析>>

同步練習冊答案