【題目】下列說法中錯(cuò)誤的序號(hào)是: _________

①已知恒成立,若為真命題,則實(shí)數(shù)的最大值為2

②已知三點(diǎn)共線,則的最小值為11;

③已知是橢圓的為兩個(gè)焦點(diǎn),點(diǎn)在橢圓上,則使三角形為直角三角形的點(diǎn)個(gè)數(shù)4 個(gè)

④在圓內(nèi),過點(diǎn)條弦的長(zhǎng)度成等差數(shù)列,最小弦長(zhǎng)為數(shù)列的首項(xiàng),最大弦長(zhǎng)為,若公差那么的取值集合為 .

【答案】①③④

【解析】

①根據(jù)p真假相反,判斷p的真假,再根據(jù)p的真假轉(zhuǎn)化為不等式,求得a的取值范圍即可判斷;

②利用向量共線定理,求得a,b的關(guān)系式,再利用基本不等式求最值,進(jìn)而判斷

先求出橢圓的焦點(diǎn),再分情況分析三角形為直角三角形的點(diǎn)個(gè)數(shù),進(jìn)而判斷;

由已知條件推導(dǎo)出4+(n-1)d=5,根據(jù)d的取值范圍,求得4≤n≤6.由此能求出n的值進(jìn)而判斷.

①已知恒成立,為真命題,則p為假命題,即(x>0)有解,整理得,

∵y=x2-ax+1開口向上,可得 ,解得錯(cuò)誤;

已知三點(diǎn)共線,可知

=(,1),=(-b-1,2),∴k==(-b-1),整理得2a+b= 1,

,

當(dāng)且僅當(dāng)時(shí)等號(hào)成立,即時(shí)等號(hào)成立.

,當(dāng)時(shí)等號(hào)成立,正確;

③已知橢圓,即

由于△PF1F2是直角三角形,根據(jù)橢圓的幾何性質(zhì), PF1F1F2,則有兩個(gè)P使得三角形是直角三角形,若PF2F1F2,則有兩個(gè)P使得三角形是兩個(gè)直角三角形

PF1PF2,設(shè)點(diǎn)P(m,n),則=(,-n),=(-m,-n),

,結(jié)合點(diǎn)P在橢圓上,

解得n= ,故滿足題意的點(diǎn)P4個(gè),

綜上所述,使三角形為直角三角形的點(diǎn)8個(gè) ,錯(cuò)誤;

x2+y2=5x的圓心為C

過點(diǎn)的最短的弦長(zhǎng)為

過點(diǎn)的最長(zhǎng)的弦長(zhǎng)為5

根據(jù)等差數(shù)列通項(xiàng)公式,4+(n-1)d=5 n*,則,

,∴ ,解得 ,的取值集合為,故④錯(cuò)誤.

故填:①③

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)).以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求的普通方程和的直角坐標(biāo)方程;

(2)若過點(diǎn)的直線交于,兩點(diǎn),與交于,兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下命題:
①雙曲線 ﹣x2=1的漸近線方程為y=± x;
②命題P:x∈R+ , sinx+ ≥1是真命題;
③已知線性回歸方程為 =3+2x,當(dāng)變量x增加2個(gè)單位,其預(yù)報(bào)值平均增加4個(gè)單位;
④設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=0.2,則P(﹣1<ξ<0)=0.6;
則正確命題的序號(hào)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}中,a1=1,an﹣an+1=anan+1 , n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)Sn為{an}的前n項(xiàng)和,bn=S2n﹣Sn , 求bn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,,,平面ABCD,EPD的中點(diǎn),

求四棱錐的體積V;

FPC的中點(diǎn),求證平面AEF;

求證平面PAB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)命題中真命題是  

A. 同垂直于一直線的兩條直線互相平行

B. 底面各邊相等,側(cè)面都是矩形的四棱柱是正四棱柱

C. 過空間任一點(diǎn)與兩條異面直線都垂直的直線有且只有一條

D. 過球面上任意兩點(diǎn)的大圓有且只有一個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若x=3是函數(shù)f(x)=(x2+ax+1)ex的極值點(diǎn),則f(x)的極大值為( 。

A. ﹣2e B. -2 C. 22 D. 6e﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),,直線與直線相交于點(diǎn),直線與直線的斜率分別記為,且

(1)求點(diǎn)的軌跡的方程;

(2)過定點(diǎn)作直線與曲線交于兩點(diǎn), 的面積是否存在最大值?若存在,求出面積的最大值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)m, n是兩條不同的直線,是三個(gè)不同的平面, 給出下列四個(gè)命題:

m⊥α,n∥α,m⊥n;; α∥β, β∥r, m⊥α,m⊥r;

m∥α,n∥α,m∥n;; α⊥r, β⊥r,α∥β

其中正確命題的序號(hào)是 ( )

A. B. ②③ C. ③④ D. ①

查看答案和解析>>

同步練習(xí)冊(cè)答案