10.設(shè)P為有公共焦點F1,F(xiàn)2的橢圓C1與雙曲線C2的一個交點,且PF1⊥PF2,橢圓C1的離心率為e1,雙曲線C2的離心率為e2,若e1=3e2,則e1=$\sqrt{5}$.

分析 由題意畫出圖形,利用圓錐曲線定義及勾股定理可得${S}_{△P{F}_{1}{F}_{2}}$=b12=b22,然后結(jié)合隱含條件列式求得$\frac{1}{{{e}_{1}}^{2}}+\frac{1}{{{e}_{2}}^{2}}=2$,再由e1=3e2即可求得e1

解答 解:如圖,由橢圓定義及勾股定理得,
$\left\{\begin{array}{l}{|P{F}_{1}|+|P{F}_{2}|=2{a}_{1}}\\{|P{F}_{1}{|}^{2}+|P{F}_{2}{|}^{2}=4{c}^{2}}\end{array}\right.$,可得${S}_{△P{F}_{1}{F}_{2}}$=b12,
∵e1=$\frac{c}{{a}_{1}}$,∴a1=$\frac{c}{{e}_{1}}$,
∴b12=a12-c2=c2($\frac{1}{{{e}_{1}}^{2}}-1$),
同理可得${S}_{△P{F}_{1}{F}_{2}}$=b22,
∵e2=$\frac{c}{{a}_{2}}$,∴a2=$\frac{c}{{e}_{2}}$,
∴b22=c2-a22=c2(1-$\frac{1}{{{e}_{2}}^{2}}$),
∴c2($\frac{1}{{{e}_{1}}^{2}}$-1)=c2(1-$\frac{1}{{{e}_{2}}^{2}}$),
即$\frac{1}{{{e}_{1}}^{2}}+\frac{1}{{{e}_{2}}^{2}}=2$,
∵e1=3e2,
∴e1=$\sqrt{5}$.
故答案為:$\sqrt{5}$.

點評 本題考查橢圓和雙曲線的簡單性質(zhì),利用三角形面積相等是解答該題的關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知Sn為正項等比數(shù)列{an}的前n項和,且S2=4,S3=13.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)Tn為數(shù)列{2n-1}的前n項和,比較2S10與T243的大小
(3)設(shè)bn=$\frac{{a}_{n+1}-{a}_{n}}{({a}_{n}+1)({a}_{n+1}+1)}$,求證:b1+b2+…+bn$<\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.今年雙11期間國家工商總局隨機抽取了100家店鋪銷售的100件羽絨大衣進行質(zhì)量檢驗,按重量(單位:g)分組(重量大的質(zhì)量高),得到的頻率分布表如圖所示:
   組號重量分組 頻數(shù) 頻率 
 第1組[160,165) 5 0.050 
 第2組[165,170) ①0.350
 第3組[170,175) 30
 第4組[175,180) 200.200 
 第5組[180,185]  10  0.100
合計  100 1.00
(Ⅰ)請先求出頻率分布表中①、②位置相應(yīng)數(shù)據(jù),再完成下列頻率分布直方圖;
(Ⅱ)由于該產(chǎn)品要求質(zhì)量高,決定在重量大的第3、4、5組中用分層抽樣抽取6個產(chǎn)品再次檢驗,求第3、4、5組每組各抽取多少產(chǎn)品進入第二次檢驗?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知 $\frac{sinα-cosα}{sinα+2cosα}=2$,則$tan({α+\frac{π}{4}})$=( 。
A.$\frac{2}{5}$B.$-\frac{2}{5}$C.$\frac{2}{3}$D.$-\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.求等比數(shù)列$\frac{2}{3}$,2,6,…的通項公式與第7項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某公司準備招聘一批員工,有20人經(jīng)過初試,其中有5人是與公司所需專業(yè)不對口,其余都是對口專業(yè),在不知道面試者專業(yè)的情況下,現(xiàn)依次選取2人進行第二次面試,第一個人已面試后,則第二次選到與公司所需專業(yè)不對口的概率是(  )
A.$\frac{5}{19}$B.$\frac{1}{19}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)y=$\sqrt{x-2}$與y=ln(1-x)的定義域分別為M、N,則M∪N=( 。
A.(1,2]B.[1,2]C.(-∞,1]∪(2,+∞)D.(-∞,1)∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列函數(shù)中,與函數(shù)f(x)=$\frac{{e}^{x}-{e}^{-x}}{3}$的奇偶性、單調(diào)性都相同的是( 。
A.f(x)=x-1B.f(x)=x2C.f(x)=x${\;}^{\frac{1}{2}}$D.f(x)=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若變量x,y滿足不等式組$\left\{\begin{array}{l}x≤1\\ x≥y\\ x+y+2≥0\end{array}\right.$,則(x,y)的整數(shù)解有( 。
A.6B.7C.8D.9

查看答案和解析>>

同步練習(xí)冊答案