A. | $\frac{1}{10}$ | B. | $\frac{3}{5}$ | C. | $\frac{7}{10}$ | D. | $\frac{4}{5}$ |
分析 如圖所示,取AC的中點(diǎn)D,A1C1的中點(diǎn)D1,建立空間直角坐標(biāo)系.利用$cos<\overrightarrow{AM},\overrightarrow{BN}>$=$\frac{\overrightarrow{AM}•\overrightarrow{BN}}{|\overrightarrow{AM}||\overrightarrow{BN}|}$,即可得出.
解答 解:如圖所示,取AC的中點(diǎn)D,A1C1的中點(diǎn)D1,建立空間直角坐標(biāo)系.
不妨設(shè)AC=2.則A(0,-1,0),M(0,0,2),B(-$\sqrt{3}$,0,0),
N$(-\frac{\sqrt{3}}{2},-\frac{1}{2},2)$.
$\overrightarrow{AM}$=(0,1,2),$\overrightarrow{BN}$=$(\frac{\sqrt{3}}{2},-\frac{1}{2},2)$.
∴$cos<\overrightarrow{AM},\overrightarrow{BN}>$=$\frac{\overrightarrow{AM}•\overrightarrow{BN}}{|\overrightarrow{AM}||\overrightarrow{BN}|}$=$\frac{\frac{7}{2}}{\sqrt{5}×\sqrt{5}}$=$\frac{7}{10}$.
故選:C.
點(diǎn)評 本題考查了向量夾角公式、數(shù)量積運(yùn)算性質(zhì)、異面直線所成的角,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | PA=PB=PC | B. | 點(diǎn)P到AB,BC,AC的距離相等 | ||
C. | PA⊥PB,PB⊥PC,PC⊥PA | D. | PA,PB,PC與平面α所成的角相等 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x+2y-2=0 | B. | 2x-y+2=0 | C. | x-2y+2=0 | D. | 2x+y-2=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com