(2007•長(zhǎng)寧區(qū)一模)若P(2,-1)為圓(x-1)2+y2=r2(r>0)內(nèi),則r的取值范圍是
2
,+∞)
2
,+∞)
分析:由于P(2,-1)為圓(x-1)2+y2=r2(r>0)內(nèi),所以點(diǎn)到圓心的距離小于半徑,,故可得不等式,從而解不等式可求.
解答:解:由于P(2,-1)為圓(x-1)2+y2=r2(r>0)內(nèi)
∴(2-1)2+(-1)2<r2
r>
2

故答案為(
2
,+∞)

點(diǎn)評(píng):本題的考點(diǎn)是點(diǎn)與圓的位置關(guān)系,主要考查點(diǎn)在圓內(nèi),關(guān)鍵是利用點(diǎn)到圓心的距離小于半徑,從而解不等式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•長(zhǎng)寧區(qū)一模)函數(shù)f(x)=3sin
π2
x-1
的最小正周期為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•長(zhǎng)寧區(qū)一模)已知數(shù)列{an}的前n項(xiàng)和Sn=5-4×2-n,則其通項(xiàng)公式為
an=
3(n=1)
4
2n
(n≥2)
an=
3(n=1)
4
2n
(n≥2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•長(zhǎng)寧區(qū)一模)已知函數(shù)f(x)=
3
|cos
π
2
x|(x≥0)
,圖象的最高點(diǎn)從左到右依次記為P1,P3,P5,…,函數(shù)y=f(x)圖象與x軸的交點(diǎn)從左到右依次記為P2,P4,P6,…,設(shè)Sn=
P1P2
P2P3
+(
P2P3
P3P4
)2
+(
P3P4
P4P5
)3
+(
P4P5
P5P6
)4
+…+(
PnPn+1
pn+1pn+2
)n
,則
lim
n→∞
Sn
1+(-2)n
=
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•長(zhǎng)寧區(qū)一模)方程4x-2x-6=0的解為
log23
log23

查看答案和解析>>

同步練習(xí)冊(cè)答案