(理)如圖,P—ABCD是正四棱錐,是正方體,其中
(1)求證:;
(2)求平面PAD與平面所成的銳二面角的余弦值;
(1)以為軸,為軸,為軸建立空間直角坐標(biāo)系, ∴ ∴∴
∴ , 即(2)
【解析】
試題分析:以為軸,為軸,為軸建立空間直角坐標(biāo)系
(1)證明:設(shè)E是BD的中點(diǎn),P—ABCD是正四棱錐,
∴
又, ∴ ∴
∴
∴ , 即.
(2)解:設(shè)平面PAD的法向量是,
∴ 取得,
又平面的法向量是
∴ , ∴.
考點(diǎn):直線垂直的判定及二面角的求解
點(diǎn)評:要證兩直線垂直只需證明兩直線的方向向量數(shù)量積為0,求二面角時(shí)首先找到兩個(gè)半平面對應(yīng)的法向量,求出法向量夾角,進(jìn)而轉(zhuǎn)化為平面角
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
PQ |
QD |
BP |
QD |
| ||
10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年洛陽市統(tǒng)一考試?yán)恚?2分) 如圖,線段AB 過x軸的正半軸上一點(diǎn)M(m,0),端點(diǎn)A、B到x軸距離之積為2m,以x軸為對稱軸,過A、O、B三點(diǎn)作拋物線
(1)求拋物線方程
(2)若tan∠AOB=-1,求m的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年福州質(zhì)檢理)(12分)
如圖,P―ABC中,D是AC的中點(diǎn),PA=PB=PC=
(1)求證:PD⊥平面ABC;
(2)求二面角P―AB―C的大。
(3)求AB的中點(diǎn)E到平面PBC的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com