分析 (1)通過討論a的范圍,求出x的范圍,結(jié)合不等式的解集,求出對應(yīng)a的值即可;
(2)求出x+y=1-z,根據(jù)z的范圍,求出u的最小值即可.
解答 解:(1)|ax-1|≤2⇒-2≤ax-1≤2?-1≤ax≤3,
當(dāng)a>0時(shí),$\frac{-1}{a}≤x≤\frac{3}{a},\left\{\begin{array}{l}\frac{-1}{a}=-1\\ \frac{3}{a}=3\end{array}\right.?a=1$,
當(dāng)a<0時(shí),$\frac{3}{a}≤x≤\frac{-1}{a},\left\{\begin{array}{l}\frac{3}{a}=-1\\ \frac{-1}{a}=3\end{array}\right.?\left\{\begin{array}{l}a=-3\\ a=-\frac{1}{3}\end{array}\right.$,此時(shí)無解,
當(dāng)a=0時(shí),也無解.
(2)由x+y+z=1⇒x+y=1-z,z∈(0,1),
則$\frac{1}{x+y}+\frac{x+y}{z}=\frac{1}{1-z}+\frac{1-z}{z}=\frac{1}{1-z}+\frac{1}{z}-1=[(1-z)+z](\frac{1}{1-z}+\frac{1}{z})-1=\frac{z}{1-z}+\frac{1-z}{z}+1≥3$,
所以${(\frac{1}{x+y}+\frac{x+y}{z})_{min}}=3$,此時(shí)$x+y=z=\frac{1}{2}$.
點(diǎn)評 本題考查了分類討論思想,考查解絕對值不等式問題以及轉(zhuǎn)化思想,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 32 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i<7 | B. | i<8 | C. | i<9 | D. | i<10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若m∥n,n?α,則m∥α | B. | m∥α,n?a,則m∥n | ||
C. | 若m∥β,n∥β,m?α,n?α,則α∥β | D. | α∥β,n?α,則n∥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com