如圖所示,在四邊形A-BCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,將△ABD沿BD折起,使平面ABD⊥平面BCD,構(gòu)成三棱錐A?BCD,則在三棱錐ABCD中,下列命題正確的是( ).
A.平面ABD⊥平面ABC
B.平面ADC⊥平面BDC
C.平面ABC⊥平面BDC
D.平面ADC⊥平面ABC
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練18練習卷(解析版) 題型:解答題
某商場為吸引顧客消費推出一項促銷活動,促銷規(guī)則如下:到該商場購物消費滿100元就可轉(zhuǎn)動如圖所示的轉(zhuǎn)盤一次,進行抽獎(轉(zhuǎn)盤為十二等分的圓盤),滿200元轉(zhuǎn)兩次,以此類推;在轉(zhuǎn)動過程中,假定指針停在轉(zhuǎn)盤的任一位置都是等可能的;若轉(zhuǎn)盤的指針落在A區(qū)域,則顧客中一等獎,獲得10元獎金;若轉(zhuǎn)盤落在B區(qū)域或C區(qū)域,則顧客中二等獎,獲得5元獎金;若轉(zhuǎn)盤指針落在其他區(qū)域,則不中獎(若指針停到兩區(qū)間的實線處,則重新轉(zhuǎn)動).若顧客在一次消費中多次中獎,則對其獎勵進行累加.已知顧客甲到該商場購物消費了268元,并按照規(guī)則參與了促銷活動.
(1)求顧客甲中一等獎的概率;
(2)記X為顧客甲所得的獎金數(shù),求X的分布列及其數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練15練習卷(解析版) 題型:選擇題
已知橢圓E:=1(a>b>0)的右焦點為F(3,0),過點F的直線交橢圓于A,B兩點.若AB的中點坐標為(1,-1),則E的方程為( ).
A. =1 B. =1 C. =1 D.=1
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練13練習卷(解析版) 題型:填空題
已知ABCD-A1B1C1D1為正方體,①(++)2=32;②·(-)=0;③向量與向量的夾角是60°;④正方體ABCD-A1B1C1D1的體積為|··|.其中正確命題的序號是________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練12練習卷(解析版) 題型:解答題
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,點O是對角線AC與BD的交點,M是PD的中點,AB=2,∠BAD=60°.
(1)求證:OM∥平面PAB;
(2)求證:平面PBD⊥平面PAC;
(3)當四棱錐P-ABCD的體積等于時,求PB的長.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練11練習卷(解析版) 題型:解答題
已知四棱錐P?ABCD的底面ABCD是邊長為2的正方形,PD⊥底面ABCD,E,F分別為棱BC,AD的中點.
(1)求證:DE∥平面PFB;
(2)已知二面角P?BF?C的余弦值為,求四棱錐P?ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練11練習卷(解析版) 題型:選擇題
某四棱臺的三視圖如圖所示,則該四棱臺的體積是( ).
A.4 B. C. D.6
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練優(yōu)化重組卷5練習卷(解析版) 題型:解答題
如圖,在平面直角坐標系xOy中,橢圓C:=1(a>b>0)的離心率為,以坐標原點為圓心,橢圓C的短半軸長為半徑的圓與直線x-y+2=0相切.
(1)求橢圓C的方程;
(2)已知點P(0,1),Q(0,2),設M,N是橢圓C上關(guān)于y軸對稱的不同兩點,直線PM與QN相交于點T.求證:點T在橢圓C上.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練優(yōu)化重組卷3練習卷(解析版) 題型:選擇題
若-9,a,-1成等差數(shù)列,-9,m,b,n,-1成等比數(shù)列,則ab=( ).
A.15 B.-15 C.±15 D.10
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com