如圖所示,在四邊形A-BCD中,ADBC,ADABBCD45°,BAD90°,將ABD沿BD折起,使平面ABD平面BCD,構(gòu)成三棱錐A?BCD,則在三棱錐ABCD中,下列命題正確的是(  )

A.平面ABD平面ABC

B.平面ADC平面BDC

C.平面ABC平面BDC

D.平面ADC平面ABC

 

D

【解析】在平面圖形中CDBD,折起后仍有CDBD,由于平面ABD平面BCD,故CD平面ABD,CDAB.ABAD,故AB平面ADC.所以平面ABC平面ADC.D選項正確.

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練18練習卷(解析版) 題型:解答題

某商場為吸引顧客消費推出一項促銷活動,促銷規(guī)則如下:到該商場購物消費滿100元就可轉(zhuǎn)動如圖所示的轉(zhuǎn)盤一次,進行抽獎(轉(zhuǎn)盤為十二等分的圓盤),滿200元轉(zhuǎn)兩次,以此類推;在轉(zhuǎn)動過程中,假定指針停在轉(zhuǎn)盤的任一位置都是等可能的;若轉(zhuǎn)盤的指針落在A區(qū)域,則顧客中一等獎,獲得10元獎金;若轉(zhuǎn)盤落在B區(qū)域或C區(qū)域,則顧客中二等獎,獲得5元獎金;若轉(zhuǎn)盤指針落在其他區(qū)域,則不中獎(若指針停到兩區(qū)間的實線處,則重新轉(zhuǎn)動).若顧客在一次消費中多次中獎,則對其獎勵進行累加.已知顧客甲到該商場購物消費了268元,并按照規(guī)則參與了促銷活動.

(1)求顧客甲中一等獎的概率;

(2)X為顧客甲所得的獎金數(shù),求X的分布列及其數(shù)學期望.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練15練習卷(解析版) 題型:選擇題

已知橢圓E1(a>b>0)的右焦點為F(3,0),過點F的直線交橢圓于A,B兩點.若AB的中點坐標為(1,-1),則E的方程為(  )

A. 1 B. 1 C. 1 D.1

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練13練習卷(解析版) 題型:填空題

已知ABCD-A1B1C1D1為正方體,()232·()0;向量與向量的夾角是60°;正方體ABCD-A1B1C1D1的體積為|··|.其中正確命題的序號是________

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練12練習卷(解析版) 題型:解答題

如圖,在四棱錐P-ABCD中,PA平面ABCD,底面ABCD是菱形,點O是對角線ACBD的交點,MPD的中點,AB2,BAD60°.

(1)求證:OM平面PAB;

(2)求證:平面PBD平面PAC

(3)當四棱錐P-ABCD的體積等于時,求PB的長.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練11練習卷(解析版) 題型:解答題

已知四棱錐P?ABCD的底面ABCD是邊長為2的正方形,PD底面ABCD,E,F分別為棱BCAD的中點.

(1)求證:DE平面PFB;

(2)已知二面角P?BF?C的余弦值為,求四棱錐P?ABCD的體積.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練11練習卷(解析版) 題型:選擇題

某四棱臺的三視圖如圖所示,則該四棱臺的體積是(  )

A4 B. C. D6

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練優(yōu)化重組卷5練習卷(解析版) 題型:解答題

如圖,在平面直角坐標系xOy中,橢圓C1(a>b>0)的離心率為,以坐標原點為圓心,橢圓C的短半軸長為半徑的圓與直線xy20相切.

(1)求橢圓C的方程;

(2)已知點P(0,1)Q(0,2),設MN是橢圓C上關(guān)于y軸對稱的不同兩點,直線PMQN相交于點T.求證:點T在橢圓C上.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練優(yōu)化重組卷3練習卷(解析版) 題型:選擇題

若-9a,-1成等差數(shù)列,-9,mb,n,-1成等比數(shù)列,則ab(  )

A15 B.-15 C±15 D10

 

查看答案和解析>>

同步練習冊答案