某食品公司為了解某種新品種食品的市場需求,進行了20天的測試,人為地調控每天產品的單價P(元/件):前10天每天單價呈直線下降趨勢(第10天免費贈送品嘗),后10天呈直線上升,其中4天的單價記錄如表:

時間(將第x天記為x)x
1
10
11
18
單價(元/件)P
9
0
1
8
而這20天相應的銷售量Q(百件/天)與x對應的點(x,Q)在如圖所示的半圓上.

(1)寫出每天銷售收入y(元)與時間x(天)的函數(shù)關系式y(tǒng)=f(x).
(2)在這20天中哪一天銷售收入最高?為使每天銷售收入最高,按此次測試結果應將單價P定為多少元為好?(結果精確到1元)

(1)y=100QP=100,x∈[1,20],x∈N*
(2)7

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

某廠生產A產品的年固定成本為250萬元,若A產品的年產量為萬件,則需另投入成本(萬元)。已知A產品年產量不超過80萬件時,;A產品年產量大于80萬件時,。因設備限制,A產品年產量不超過200萬件,F(xiàn)已知A產品的售價為50元/件,且年內生產的A產品能全部銷售完。設該廠生產A產品的年利潤為L(萬元)。
(1)寫出L關于的函數(shù)解析式;
(2)當年產量為多少時,該廠生產A產品所獲的利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,若對于所有的恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2個小題滿分8分。
已知.
(1)當,時,若不等式恒成立,求的范圍;
(2)試證函數(shù)內存在零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),
(1)若函數(shù)上是減函數(shù),求實數(shù)的取值范圍;
(2)是否存在實數(shù),當是自然常數(shù))時,函數(shù)的最小值是3,若存在,求出的值;若不存在,說明理由;
(3)當時,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)f(x)=ax2+(b-2)x+3(a≠0),若不等式f(x)>0的解集為(-1,3).
(1)求a,b的值;
(2)若函數(shù)f(x)在x∈[m,1]上的最小值為1,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設二次函數(shù)滿足條件:①;②函數(shù)的圖像與直線相切.
(1)求函數(shù)的解析式;
(2)若不等式時恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)若上存在零點,求實數(shù)的取值范圍;
(2)當時,若對任意的,總存在使成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲同學家到乙同學家的途中有一公園,甲從家到公園的距離與乙從家到公園的距離都是2 km,甲10時出發(fā)前往乙家.如圖所示,表示甲從家出發(fā)到達乙家為止經過的路程y(km)與時間x(分)的關系.試寫出y=f(x)的函數(shù)解析式.

查看答案和解析>>

同步練習冊答案