分析 (I)由圓E在Γ內(nèi)的弧長為$\frac{2}{3}$π,可得該弧所對的圓心角為$\frac{2}{3}π$,可得M$(1,\frac{\sqrt{3}}{2})$,N$(1,-\frac{\sqrt{3}}{2})$,可得:$\left\{\begin{array}{l}{\frac{1}{{a}^{2}}+\frac{3}{4^{2}}=1}\\{\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.$,解出即可得a,b.
(II)(1)設(shè)A(x1,y1),B(x2,y2),直線AB的方程為:y=kx+m,與橢圓方程聯(lián)立,可得:(1+4k2)x2+8kmx+4m2-4=0,利用根與系數(shù)的關(guān)系代入k1k2=$\frac{1}{4}$.∴$\frac{{y}_{1}{y}_{2}}{{x}_{1}{x}_{2}}$=$\frac{1}{4}$,即4y1y2=x1x2,可得4k2=1,解得k.
(2)|AB|=$\sqrt{1+{k}^{2}}$$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$,點O到直線BA的距離d=$\frac{|m|}{\sqrt{1+{k}^{2}}}$,四邊形ABCD的面積S=4S△ABO=2|AB|d,再利用基本不等式的性質(zhì)即可得出.
解答 解:(I)由圓E在Γ內(nèi)的弧長為$\frac{2}{3}$π,可得該弧所對的圓心角為$\frac{2}{3}π$,可得M$(1,\frac{\sqrt{3}}{2})$,N$(1,-\frac{\sqrt{3}}{2})$,
可得:$\left\{\begin{array}{l}{\frac{1}{{a}^{2}}+\frac{3}{4^{2}}=1}\\{\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.$,解得a=2,b=1.
∴橢圓的方程為:$\frac{{x}^{2}}{4}+{y}^{2}=1$.
(II)(1)設(shè)A(x1,y1),B(x2,y2),直線AB的方程為:y=kx+m,聯(lián)立$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+{y}^{2}=1}\\{y=kx+m}\end{array}\right.$,
可得:(1+4k2)x2+8kmx+4m2-4=0,△=16(1+4k2-m2)>0,
x1+x2=$\frac{-8km}{1+4{k}^{2}}$,x1x2=$\frac{4({m}^{2}-1)}{1+4{k}^{2}}$.
y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=$\frac{-4{k}^{2}+{m}^{2}}{1+4{k}^{2}}$,
∵k1k2=$\frac{1}{4}$.∴$\frac{{y}_{1}{y}_{2}}{{x}_{1}{x}_{2}}$=$\frac{1}{4}$,即4y1y2=x1x2,
∴4k2=1,解得$k=±\frac{1}{2}$.
(2)|AB|=$\sqrt{1+{k}^{2}}$$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\frac{\sqrt{1+{k}^{2}}\sqrt{16(4{k}^{2}+1-{m}^{2})}}{1+4{k}^{2}}$,
點O到直線BA的距離d=$\frac{|m|}{\sqrt{1+{k}^{2}}}$,
四邊形ABCD的面積S=4S△ABO=2|AB|d=4|m|$\sqrt{2-{m}^{2}}$≤4×$\frac{{m}^{2}+2-{m}^{2}}{2}$=4,
∵m2∈(0,2),且m2≠1,∴S∈(0,4).
點評 本題考查了橢圓的標準方程及其性質(zhì)、直線與橢圓相交弦長問題、一元二次方程的根與系數(shù)的關(guān)系、弦長公式、點到直線的距離公式、三角形面積計算公式、基本不等式的性質(zhì),考查了推理能力與計算能力,屬于難題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z) | B. | [kπ-$\frac{7π}{12}$,kπ-$\frac{π}{12}$](k∈Z) | ||
C. | [$\frac{2kπ}{3}$-$\frac{π}{18}$,$\frac{2kπ}{3}$+$\frac{5π}{18}$](k∈Z) | D. | [$\frac{2kπ}{3}$-$\frac{7π}{18}$,$\frac{2kπ}{3}$-$\frac{π}{18}$](k∈Z) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 12 | B. | 24 | C. | 6 | D. | 48 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com