【題目】已知函數(shù)(,是自然對數(shù)的底數(shù)).
(1)討論的單調(diào)性;
(2)若存在,使得,證明:.
【答案】(1)見解析;(2)證明見解析.
【解析】
(1)函數(shù)求導(dǎo)后對 分類討論即可得解;(2)由,知,原不等式可轉(zhuǎn)化為,構(gòu)造函數(shù),,分別利用導(dǎo)數(shù)求其最大值與最小值即可.
(1),,
①當(dāng)時,,于是令得,令得,
所以函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是,
②當(dāng)時,令,∴或,
當(dāng)時,,所以函數(shù)的單調(diào)遞增區(qū)間是,
當(dāng)時,,當(dāng),時,;當(dāng)時,,
所以函數(shù)的單調(diào)遞增區(qū)間是,,單調(diào)遞減區(qū)間是.
當(dāng)時,,當(dāng),時,;當(dāng)時,,
所以函數(shù)的單調(diào)遞增區(qū)間是,,單調(diào)遞減區(qū)間是.
(2)因為,∴,∴,
即證,
設(shè),∴,
所以在上單調(diào)遞減,在上單調(diào)遞增,所以.
令,∴,
所以函數(shù)在上為增函數(shù),
所以,
即,
由此得,
即.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在,上單調(diào)遞增,求實數(shù)的取值范圍;
(2)若函數(shù)在處的切線平行于軸,是否存在整數(shù),使不等式在時恒成立?若存在,求出的最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】天氣預(yù)報說,在今后的三天中,每一天下雨的概率為,用隨機模擬的方法估計這三天中恰有兩天下雨的概率.可利用計算機產(chǎn)生0到9之間的整數(shù)值的隨機數(shù),如果我們用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨,順次產(chǎn)生的隨機數(shù)如下:
90 79 66 19 19 25 27 19 32 81 24 58 56 96 83
43 12 57 39 30 27 55 64 88 73 01 13 13 79 89
,這三天中恰有兩天下雨的概率約為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著科學(xué)技術(shù)的飛速發(fā)展,網(wǎng)絡(luò)也已經(jīng)逐漸融入了人們的日常生活,網(wǎng)購作為一種新的消費方式,因其具有快捷、商品種類齊全、性價比高等優(yōu)勢而深受廣大消費者認可.某網(wǎng)購公司統(tǒng)計了近五年在本公司網(wǎng)購的人數(shù),得到如下的相關(guān)數(shù)據(jù)(其中“x=1”表示2015年,“x=2”表示2016年,依次類推;y表示人數(shù)):
x | 1 | 2 | 3 | 4 | 5 |
y(萬人) | 20 | 50 | 100 | 150 | 180 |
(1)試根據(jù)表中的數(shù)據(jù),求出y關(guān)于x的線性回歸方程,并預(yù)測到哪一年該公司的網(wǎng)購人數(shù)能超過300萬人;
(2)該公司為了吸引網(wǎng)購者,特別推出“玩網(wǎng)絡(luò)游戲,送免費購物券”活動,網(wǎng)購者可根據(jù)拋擲骰子的結(jié)果,操控微型遙控車在方格圖上行進. 若遙控車最終停在“勝利大本營”,則網(wǎng)購者可獲得免費購物券500元;若遙控車最終停在“失敗大本營”,則網(wǎng)購者可獲得免費購物券200元. 已知骰子出現(xiàn)奇數(shù)與偶數(shù)的概率都是,方格圖上標有第0格、第1格、第2格、…、第20格。遙控車開始在第0格,網(wǎng)購者每拋擲一次骰子,遙控車向前移動一次.若擲出奇數(shù),遙控車向前移動一格(從到)若擲出偶數(shù)遙控車向前移動兩格(從到),直到遙控車移到第19格勝利大本營)或第20格(失敗大本營)時,游戲結(jié)束。設(shè)遙控車移到第格的概率為,試證明是等比數(shù)列,并求網(wǎng)購者參與游戲一次獲得免費購物券金額的期望值.
附:在線性回歸方程中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】每年3月20日是國際幸福日,某電視臺隨機調(diào)查某一社區(qū)人們的幸福度.現(xiàn)從該社區(qū)群中隨機抽取18名,用“10分制”記錄了他們的幸福度指數(shù),結(jié)果見如圖所示莖葉圖,其中以小數(shù)點前的一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉.若幸福度不低于8.5分,則稱該人的幸福度為“很幸!保
(Ⅰ)求從這18人中隨機選取3人,至少有1人是“很幸福”的概率;
(Ⅱ)以這18人的樣本數(shù)據(jù)來估計整個社區(qū)的總體數(shù)據(jù),若從該社區(qū)(人數(shù)很多)任選3人,記表示抽到“很幸!钡娜藬(shù),求的分布列及.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二面角α﹣l﹣β為60°,在其內(nèi)部取點A,在半平面α,β內(nèi)分別取點B,C.若點A到棱l的距離為1,則△ABC的周長的最小值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
甲、乙、丙三名射擊運動員射中目標的概率分別為,三人各射擊一次,擊中目標的次數(shù)記為.
(1)求的分布列及數(shù)學(xué)期望;
(2)在概率(=0,1,2,3)中, 若的值最大, 求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與
橢圓的一個交點為,點
是的焦點,且.
(1)求與的方程;
(2)設(shè)為坐標原點,在第一象限內(nèi),橢圓上是否存在點,使過作的垂線交拋物線于,直線交軸于,且?若存在,求出點的坐標和的面積;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十九世紀末,法國學(xué)者貝特朗在研究幾何概型時提出了“貝特朗悖論”,即“在一個圓內(nèi)任意選一條弦,這條弦的弦長長于這個圓的內(nèi)接等邊三角形邊長的概率是多少?”貝特朗用“隨機半徑”、“隨機端點”、“隨機中點”三個合理的求解方法,但結(jié)果都不相同.該悖論的矛頭直擊概率概念本身,強烈地刺激了概率論基礎(chǔ)的嚴格化.已知“隨機端點”的方法如下:設(shè)A為圓O上一個定點,在圓周上隨機取一點B,連接AB,所得弦長AB大于圓O的內(nèi)接等邊三角形邊長的概率.則由“隨機端點”求法所求得的概率為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com