(本小題滿分12分)已知橢圓的中心在原點,焦點在軸上,離心率為,且經(jīng)過點,直線交橢圓于不同的兩點.

(1)求橢圓的方程;

(2)求的取值范圍;

(3)若直線不過點,求證:直線軸圍成一個等腰三角形.

 

【答案】

(1) (2)(3)見解析

【解析】

試題分析:(1)由已知橢圓焦點在軸上可設橢圓的方程為,(

因為,所以,                                   ①

又因為過點,所以,                         ②

聯(lián)立①②解得,故橢圓方程為.                         ……4分

 (2)將代入并整理得

因為直線與橢圓有兩個交點,

所以,解得.                         ……8分

(3)設直線的斜率分別為,只要證明即可.

,

.

所以

所以,所以直線軸圍成一個等腰三角形.                  ……12分

考點:本小題主要考查橢圓標準方程的求法,橢圓中基本量的計算和直線與橢圓的位置關系,考查學生綜合運用知識解決問題的能力、推理論證能力和運算能力.

點評:縱觀歷年高考,橢圓是一個高頻考點,題型有選擇題和填空題,難度不大,但解答題是壓軸題,難度較大,所以在學習中,同學們一方面要掌握好橢圓的標準方程和幾何性質等基礎知識,另外還要多歸納這些知識的使用方法和應用技巧,做到心中有數(shù),從容應對.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產(chǎn)業(yè)建設工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設.求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調查和預測,A產(chǎn)品的利潤與投資成正比,其關系如圖1,B產(chǎn)品的利潤與投資的算術平方根成正比,其關系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案