已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的焦距為2
5
,雙曲線C的漸近線為y=±
1
2
x,則雙曲線C的方程為( 。
A、
x2
8
-
y2
2
=1
B、
x2
2
-
y2
8
=1
C、
x2
4
-y2=1
D、x2-
y2
4
=1
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:利用雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的焦距為2
5
,雙曲線C的漸近線為y=±
1
2
x,求出a,b,即可確定雙曲線C的方程.
解答: 解:∵雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的焦距為2
5
,雙曲線C的漸近線為y=±
1
2
x,
∴c=
5
,
b
a
=
1
2

∴a=2,b=1,
∴雙曲線C的方程為
x2
4
-y2=1

故選:C.
點(diǎn)評(píng):本題考查雙曲線C的方程,考查雙曲線的性質(zhì),比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)Z1=3+i,Z2=1-i,則Z=Z1•Z2的復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)位于第
 
象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(
x
+
3
3x
n展開(kāi)式中第4項(xiàng)為常數(shù)項(xiàng),則n是( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a
|=2|
b
|≠0,且關(guān)于x的方程x2+|
a
|x+
3
3
a
b
=0有實(shí)根,則
a
b
的夾角的取值范圍是( 。
A、[0,
π
6
]
B、[0,
π
3
]
C、[
π
6
,π]
D、[
π
3
,π]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z=1+i,則
.
z
•i在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)上的動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2分別是其左、右焦點(diǎn),O為坐標(biāo)原點(diǎn),若
|PF1|+|PF2|
|OP|
的最大值是
6
,則此雙曲線的離心率是( 。
A、
3
B、
6
2
C、
3
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如右圖所示的程序框圖,輸出的S值為(  )
A、250-1
B、
2
3
(426-1)
C、251-1
D、
2
3
(425-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
-1  x>0
1  x<0
,則
(a+b)+(a-b)•f(a-b)
2
(a≠b)的值為( 。
A、aB、b
C、a,b中較小的數(shù)D、a,b中較大的數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C與雙曲線
x2
2
-y2=1有相同的漸近線,且經(jīng)過(guò)點(diǎn)(-3,2).
(1)求雙曲線C的方程;
(2)求直線y=x+
3
被雙曲線C所截得的弦長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案