【題目】如圖,在四棱錐中,四邊形為正方形, 平面, , 是上一點(diǎn),且.
(1)求證: 平面;
(2)求直線與平面所成角的正弦值.
【答案】(1)證明見解析;(2).
【解析】試題分析:
(1)連接,由線面垂直的性質(zhì)定理可得,且,故平面, ,又,利用線面垂直的判斷定理可得平面.
(2)法1:由(1)知平面,即是直線與平面所成角,設(shè),則, , ,結(jié)合幾何關(guān)系計算可得,即直線與平面所成角的正弦值為.
法2:取為原點(diǎn),直線, , 分別為, , 軸,建立坐標(biāo)系,不妨設(shè),結(jié)合(1)的結(jié)論可得平面得法向量,而,據(jù)此計算可得直線與平面所成角的正弦值為.
試題解析:
(1)連接,由平面, 平面得,
又, ,
∴平面,得,
又, ,
∴平面.
(2)法1:由(1)知平面,即是直線與平面所成角,易證,而,
不妨設(shè),則, , ,
在中,由射影定理得,
可得,所以,
故直線與平面所成角的正弦值為.
法2:取為原點(diǎn),直線, , 分別為, , 軸,建立坐標(biāo)系,不妨設(shè),則, , ,
由(1)知平面得法向量,而,
∴ .
故直線與平面所成角的正弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為 (其中為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(其中).
(1)若點(diǎn)的直角坐標(biāo)為,且點(diǎn)在曲線內(nèi),求實(shí)數(shù)的取值范圍;
(2)若,當(dāng)變化時,求直線被曲線截得的弦長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a、b、c分別是角A、B、C的對邊,S是該三角形的面積,且
(1)求角A的大。
(2)若角A為銳角, ,求邊BC上的中線AD的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司發(fā)放員工的薪水有三種方式:①第一個月工資3000元,以后每月以1%的增長率增長;②第一個月工資2400元,以后每月以2%的增長率增長;③第一個月工資為3200元,每月漲工資30元.
(1)設(shè)第x個月的工資分別為元,試分別建立關(guān)于x的函數(shù);
(2)借助計算器計算這三種情況下各個月的工資;
(3)請分析這三種領(lǐng)薪方法的區(qū)別,作為員工選擇何種方法更合算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分15分)如圖,在半徑為的半圓形(O為圓心)鐵皮上截取一塊矩形材料ABCD,其中點(diǎn)A、B在直徑上,點(diǎn)C、D在圓周上,將所截得的矩形鐵皮ABCD卷成一個以AD為母線的圓柱形罐子的側(cè)面(不計剪裁和拼接損耗),記圓柱形罐子的體積為.
(1)按下列要求建立函數(shù)關(guān)系式:
①設(shè),將表示為的函數(shù);
②設(shè)(),將表示為的函數(shù);
(2)請您選用(1)問中的一個函數(shù)關(guān)系,求圓柱形罐子的最大體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了解高二年級學(xué)生某次數(shù)學(xué)考試成績的分布情況,從該年級的1120名學(xué)生中隨機(jī)抽取了100名學(xué)生的數(shù)學(xué)成績,發(fā)現(xiàn)都在內(nèi)現(xiàn)將這100名學(xué)生的成績按照,,,,,,分組后,得到的頻率分布直方圖如圖所示,則下列說法正確的是
A. 頻率分布直方圖中a的值為
B. 樣本數(shù)據(jù)低于130分的頻率為
C. 總體的中位數(shù)保留1位小數(shù)估計為分
D. 總體分布在的頻數(shù)一定與總體分布在的頻數(shù)相等
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表提供了工廠技術(shù)改造后某種型號設(shè)備的使用年限x和所支出的維修費(fèi)y(萬元)的幾組對照數(shù)據(jù):
x(年) | 2 | 3 | 4 | 5 | 6 |
y(萬元) | 1 | 2.5 | 3 | 4 | 4.5 |
(1)若知道y對x呈線性相關(guān)關(guān)系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(2)已知該工廠技術(shù)改造前該型號設(shè)備使用10年的維修費(fèi)用為9萬元,試根據(jù)(1)求出的線性回歸方程,預(yù)測該型號設(shè)備技術(shù)改造后,使用10年的維修費(fèi)用能否比技術(shù)改造前降低?參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線=1,P為雙曲線右支上除x軸上之外的一點(diǎn).
(1)若∠F1PF2=θ,求△F1PF2的面積.
(2)若該雙曲線與橢圓+y2=1有共同的焦點(diǎn)且過點(diǎn)A(2,1),求△F1PF2內(nèi)切圓的圓心軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P到兩定點(diǎn)M(-1,0)、N(1,0)距離的比為,點(diǎn)N到直線PM的距離為1,求直線PN的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com