分析 將直線l和曲線C化為普通方程,進而根據(jù)直線被圓所截得的弦長公式,可得答案.
解答 解:∵直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+t}\\{y=3-2t}\end{array}$(t為參數(shù)),化為普通方程得:2x+y=5,即2x+y-5=0,
∵曲線C的極坐標方程為ρ=2$\sqrt{2}sin(θ+\frac{π}{4})$=2sinθ+2cosθ,
∴ρ2=2ρsinθ+2ρcosθ,
把曲線C的極坐標方程化為普通方程得x2+y2=2x+2y,
即(x-1)2+(y-1)2=2,
圓心(1,1)到直線2x+y-5=0的距離為$\frac{2}{\sqrt{5}}$,
則弦長為2$\sqrt{2-\frac{4}{5}}$=$\frac{2\sqrt{30}}{5}$,
故答案為$\frac{2\sqrt{30}}{5}$.
點評 本題考查的知識點是直線的參數(shù)方程,圓的極坐標方程,直線與圓的位置關系,難度中檔.
科目:高中數(shù)學 來源: 題型:解答題
成績(單位:分) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
數(shù)學 | 8 | 12 | 40 | 32 | 8 |
物理 | 7 | 18 | 40 | 29 | 6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | -$\frac{1}{8}$ | C. | -$\frac{1}{4}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com