【題目】古希臘人常用小石子在沙灘上擺成各種形狀來研究數(shù),例如:

他們研究過圖1中的1,3,6,10,…,由于這些數(shù)能夠表示成三角形,將其稱為三角形數(shù);類似地,稱圖2中的1,4,9,16,…這樣的數(shù)為正方形數(shù).下列數(shù)中既是三角形數(shù)又是正方形數(shù)的是

A. 289 B. 1 024 C. 1 225 D. 1 378

【答案】C

【解析】試題分析:根據(jù)圖形觀察歸納猜想出兩個數(shù)列的通項公式,再根據(jù)通項公式的特點排除,即可求得結(jié)果.解:由圖形可得三角形數(shù)構(gòu)成的數(shù)列通項an= (n+1),同理可得正方形數(shù)構(gòu)成的數(shù)列通項bn=n2,則由bn=n2nN+)可排除D,又由an= (n+1), (n+1)=289 (n+1)=1024無正整數(shù)解,故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若曲線在點處與直線相切,求的值;

(2)若曲線與直線有兩個不同交點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】的內(nèi)角所對的邊分別為,且.

(1)求;

(2)若,的面積為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知下列命題:

①若直線與平面有兩個公共點,則直線在平面內(nèi);

②若直線上有無數(shù)個點不在平面內(nèi),則;

③若直線與平面相交,則與平面內(nèi)的任意直線都是異面直線;

④如果兩條異面直線中的一條與一個平面平行,則另一條直線一定與該平面相交;

⑤若直線與平面平行,則與平面內(nèi)的直線平行或異面;

⑥若平面平面,直線,直線,則直線

上述命題正確的是__________.(請把所有正確命題的序號填在橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),若時,恒有 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不等式的解集為,

(1)

(2)解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,過點作垂直于軸的直線,直線垂直于點,線段的垂直平分線交于點

1求點的軌跡的方程;

2過點作兩條互相垂直的直線,且分別交橢圓于,求四邊形面積的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為推行“微課、翻轉(zhuǎn)課堂”教學(xué)法,某數(shù)學(xué)老師分別用傳統(tǒng)教學(xué)和“微課、翻轉(zhuǎn)課堂”兩種不同的教學(xué)方式,在甲、乙兩個平行班級進(jìn)行教學(xué)實驗,為了比較教學(xué)效果,期中考試后,分別從兩個班級中各隨機抽取20名學(xué)生的成績進(jìn)行統(tǒng)計,結(jié)果如下表:

記成績不低于70分者為“成績優(yōu)良”

1由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷“成績優(yōu)良與教學(xué)方式是否有關(guān)”?

附:

臨界值表:

2現(xiàn)從上述40人中,學(xué)校按成績是否優(yōu)良采用分層抽樣的方法抽取8人進(jìn)行考核,在這8人中,記成績不優(yōu)良的乙班人數(shù)為,求的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)高三數(shù)學(xué)奧林匹克競賽集訓(xùn)隊的一次數(shù)學(xué)測試成績的莖葉圖(圖1)和頻率分布直方圖(圖2)都受到不同程度的破壞,可見部分如圖所示,據(jù)此解答如下問題.

(1)求該集訓(xùn)隊總人數(shù)及分?jǐn)?shù)在[80,90)之間的頻數(shù);

(2)計算頻率分布直方圖中[80,90)的矩形的高;

(3)若要從分?jǐn)?shù)在[80,100]之間的試卷中任取兩份分析學(xué)生的答題情況,在抽取的試卷中,求至少有一份分?jǐn)?shù)在[90,100]之間的概率.

查看答案和解析>>

同步練習(xí)冊答案