已知(x2+1)n展開式中的各項系數(shù)之和等于(
16
5
x2
+
1
x
5展開式的常數(shù)項.求(x2+1)n展開式中二項式系數(shù)最大項.
分析:由題意可得(x2+1)n展開式中的各項系數(shù)之和為2n,(
16
5
x2
+
1
x
5展開式的常數(shù)項為16,可得n值,進而可得(x2+1)n=(x2+1)4,由二項式系數(shù)的特點易得答案.
解答:解:把x=1代入可得(x2+1)n展開式中的各項系數(shù)之和為2n
而(
16
5
x2
+
1
x
5展開式的通項為Tk+1=
C
k
5
(
16
5
x2)5-k(
1
x
)k
=
C
k
5
(
16
5
)
5-k
x10-
5k
2
,
令10-
5k
2
=0,可得k=4,故常數(shù)項為T5=16,
由題意可得2n=16,故n=4,
故(x2+1)n=(x2+1)4,展開式共5項,
故二項式系數(shù)最大項為第3項,為
C
3
4
(x2)212
=4x4
點評:本題考查二項式定理的應(yīng)用,涉及二項展開式的通項和二項式系數(shù),屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

6、已知f(x)=(x+1)n且f′(x)展成關(guān)于x的多項式,其中x2的系數(shù)為60,則n=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=(1+x)m+(1+x)n(m,n∈N*)的展開式中x的系數(shù)為19,求f(x)的展式式中x2的系數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知f(x)=(1+x)m+(1+x)n(m,n∈N*)的展開式中x的系數(shù)為19,求f(x)的展式式中x2的系數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省青島二中高二(上)9月月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知f(x)=(1+x)m+(1+x)n(m,n∈N*)的展開式中x的系數(shù)為19,求f(x)的展式式中x2的系數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高考數(shù)學(xué)一輪復(fù)習(xí)必備(第97-99課時):第十三章 導(dǎo)數(shù)-導(dǎo)數(shù)的應(yīng)用(2)(解析版) 題型:選擇題

已知f(x)=(x+1)n且f′(x)展成關(guān)于x的多項式,其中x2的系數(shù)為60,則n=( )
A.7
B.6
C.5
D.4

查看答案和解析>>

同步練習(xí)冊答案