分析 (Ⅰ)求出數(shù)列{an}的通項公式,再求數(shù)列{bn}的通項公式;
(Ⅱ)求出數(shù)列{cn}的通項,利用錯位相減法求數(shù)列{cn}的前n項和Tn.
解答 解:(Ⅰ)∵數(shù)列{an}的前n項和${S_n}=3{n^2}+8n$,
∴a1=11.
當(dāng)n≥2時,${a_n}={S_n}-{S_{n-1}}=3{n^2}+8n-3{(n-1)^2}-8(n-1)=6n+5$.
又∵an=6n+5對n=1也成立所以an=6n+5,{bn}是等差數(shù)列,設(shè)公差為d,則an=bn+bn+1=2bn+d.
當(dāng)n=1時,2b1=11-d;當(dāng)n=2時,2b2=17-d
由$\left\{\begin{array}{l}2{b_1}=11-d\\ 2{b_2}=17-d\end{array}\right.$,
解得d=3,
所以數(shù)列{bn}的通項公式為${b_n}=\frac{{{a_n}-d}}{2}=3n+1$;
(Ⅱ)由${c_n}=\frac{{{{({a_n}+1)}^{n+1}}}}{{3{{({b_n}+2)}^n}}}=\frac{{{{(6n+6)}^{n+1}}}}{{3{{(3n+3)}^n}}}=(n+1)•{2^{n+1}}$,
于是,${T_n}=2•{2^2}+3•{2^3}+4•{2^4}+…+(n+1)•{2^{n+1}}$,
兩邊同乘以2,得$2{T_n}=2•{2^3}+3•{2^4}+…+n•{2^{n+1}}+(n+1)•{2^{n+2}}$.
兩式相減,得$-{T_n}=8-(n+1)•{2^{n+2}}+({{2^3}+{2^4}+…+{2^{n+1}}})$=$8-(n+1)•{2^{n+2}}+\frac{{8({1-{2^{n-1}}})}}{1-2}$=-n•2n+2.
所以,${T_n}=n•{2^{n+2}}$.
點評 本題考查數(shù)列的通項與求和,著重考查等差數(shù)列的通項與錯位相減法的運用,考查分析與運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要 | B. | 必要不充分 | ||
C. | 充要 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
年級 | 高一 | 高二 | 高三 |
數(shù)量 | 50 | 150 | 100 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com