(1)數(shù)學(xué)公式
(2)(2數(shù)學(xué)公式數(shù)學(xué)公式-(-2008)0-(3數(shù)學(xué)公式數(shù)學(xué)公式+(數(shù)學(xué)公式-2

解:(1)
=(lg100+lg5)+(lg8-lg5)-+50
=(2+lg5)+(3lg2-lg5)-3lg2+50=52; 
(2)(2-(-2008)0-(3+(-2
=
=
=
分析:(1)直接利用對(duì)數(shù)的運(yùn)算性質(zhì)化簡(jiǎn)計(jì)算;
(2)變帶分?jǐn)?shù)為假分?jǐn)?shù),變負(fù)指數(shù)為正指數(shù),然后利用有理指數(shù)冪的化簡(jiǎn)求值.
點(diǎn)評(píng):本題考查了有理指數(shù)冪的化簡(jiǎn)與求值,考查了對(duì)數(shù)的運(yùn)算性質(zhì),是基礎(chǔ)的計(jì)算題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,且an=
n
n-1
an-1+2n•3n-2(n≥2,n∈N?).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=
3n-1
an
 (n∈N?),數(shù)列{bn}的前n項(xiàng)和為Sn,試比較S2與n的大;
(3)令cn=
an+1
n+1
 (n∈N*),數(shù)列{
2cn
(cn-1)2
}的前n項(xiàng)和為Tn.求證:對(duì)任意n∈N*,都有 Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|x2-x-12≤0}集合B={x|m-1≤x≤3m-2}若A∪B=A,則實(shí)數(shù)m的取值范圍為( 。
A、(-∞,-2]
B、[
1
2
,2]
C、(-∞,2]
D、[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an} 滿足a1=1,a2=2,an+2=(1-
1
3
cos2
2
)an+2sin2
2
,n=1,2,3…
(1)求a3,a4及數(shù)列{an}的通項(xiàng)公式;(2)設(shè)Sn=a1+a2+…+an,求S2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的首項(xiàng)a1=2a+1(a是常數(shù),且a≠-1),an=2an-1+n2-4n+2(n≥2),數(shù)列{bn}的首項(xiàng)b1=a,bn=an+n2(n≥2).
(1)證明:{bn}從第2項(xiàng)起是以2為公比的等比數(shù)列;
(2)設(shè)Sn為數(shù)列{bn}的前n項(xiàng)和,且{Sn}是等比數(shù)列,求實(shí)數(shù)a的值;
(3)當(dāng)a>0時(shí),求數(shù)列{an}的最小項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知空間整數(shù)點(diǎn)的序列如下:(1,1,1)(1,1,2)(1,2,1)(2,1,1)(1,1,3)(1,3,1)(3,1,1)(1,2,2)(2,1,2)(2,2,1)(1,1,4)(1,4,1)(4,1,1)(1,2,3)則(1,5,1)是這個(gè)序列中的第
22
22
個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案