16.已知等差數(shù)列{an}中,a2+a8=10,則該數(shù)列前9項和S9等于( 。
A.18B.27C.36D.45

分析 由等差數(shù)列{an}的性質,可得a1+a9=a2+a8=10,再利用求和公式即可得出.

解答 解:由等差數(shù)列{an}的性質,及a2+a8=10,
∴a1+a9=a2+a8=10,
∴該數(shù)列前9項和S9=$\frac{9({a}_{1}+{a}_{9})}{2}$=$\frac{9×10}{2}$=45.
故選:D.

點評 本題考查了等差數(shù)列的通項公式性質及其求和公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

6.設函數(shù)f(x)=alnx+b(x2-3x+2),其中a,b∈R.
(I)若a=b,討論f(x)極值(用a表示);
(Ⅱ)當a=1,b=$-\frac{1}{2}$,函數(shù)g(x)=2f(x)-(λ+3)x+2,若x1,x2(x1≠x2)滿足g(x1)=g(x2)且x1+x2=2x0,證明:g′(x0)≠0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=x3+ax2+bx+c的圖象經過原點,且在x=1處取得極值,
(1)若y=f(x)在原點處的切線的斜率為-3,求f(x)的解析式和極值;
(2)若f(x)在x=1處取得的是極小值,問是否存在實數(shù)m,n,t∈[1,$\frac{3}{2}$]使得f(m)+f(n)<f(t)成立,若存在,求實數(shù)a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.函數(shù)f(x)=x3+2xf′(-1),則函數(shù)f(1)=-5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在等差數(shù)列{an}中,a1+a6=12,a4=7,求an及前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.(I)若關于x的不等式|x+1|-|x-2|>|a-3|的解集是空集,求實數(shù)a的取值范圍;
(II)對任意正實數(shù)x,y,不等式$\sqrt{2x}+\sqrt{3y}$<k$\sqrt{8x+6y}$恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.定義在(-$\frac{π}{2}$,$\frac{π}{2}$)上的函數(shù)f(x)的導函數(shù)為f'(x),且當x∈(0,$\frac{π}{2}$)時,f'(x)>sin2x•f(x)-cos2x•f'(x),若a=f($\frac{π}{3}$),b=2f(0),c=$\sqrt{3}$f($\frac{π}{6}$),則a,b,c的大小關系是( 。
A.a>b>cB.c>b>aC.a>c>bD.b>c>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.整個上午(8:00~12:00)天氣越來越暖,中午時分(12:00~13:00)一場暴風雨使天氣驟然涼爽了許多,暴風雨過后,天氣轉暖,直到太陽落山(18:00)才又開始轉涼,畫出這一天8:00~20:00期間氣溫作為時間函數(shù)的一個可能的圖象,并說出所畫函數(shù)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.在一次考試中,7位同學的數(shù)學、物理成績分數(shù)對應如表:
學生  A
 數(shù)學(x分) 60 65 70 75 80 85 90
 物理(y分) 7177 80 84 87 90 92
(1)根據(jù)上述數(shù)據(jù),求出變量y與x的相應系數(shù)并說明物理成績y與數(shù)學成績x之間線性相關關系的強弱
(2)如果物理成績y與數(shù)學成績x之間有較強的線性相關關系,求y與x的線性回歸方程,并估測該班某位同學數(shù)學分數(shù)是95分時的物理成績;(系數(shù)精確到0.01)
本題參考數(shù)據(jù):
$\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}$=700,$\sum_{i=1}^{n}$(xi-$\overline{x}$)(yi-$\overline{y}$)=480,$\sqrt{700}$≈26.5,$\sqrt{336}$≈18.3
參考公式:相關系數(shù)r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$
對于相關數(shù)據(jù)系數(shù)r的大小,如果r∈[-1,-0.75],那么y與x負相關很強,如果r∈[0.75,1],那么y與x正相關很強,如果r∈(-0.75,-0.30)或r∈(0.30,0.75),那么y與x相關性一般,如果r∈[-0.25,0.25],那么y與x相關性較弱.
回歸直線方程:$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

同步練習冊答案