【題目】美國(guó)對(duì)中國(guó)芯片的技術(shù)封鎖,這卻激發(fā)了中國(guó)“芯”的研究熱潮.某公司研發(fā)的,兩種芯片都已經(jīng)獲得成功.該公司研發(fā)芯片已經(jīng)耗費(fèi)資金千萬(wàn)元,現(xiàn)在準(zhǔn)備投入資金進(jìn)行生產(chǎn).經(jīng)市場(chǎng)調(diào)查與預(yù)測(cè),生產(chǎn)芯片的毛收入與投入的資金成正比,已知每投入千萬(wàn)元,公司獲得毛收入千萬(wàn)元;生產(chǎn)芯片的毛收入(千萬(wàn)元)與投入的資金(千萬(wàn)元)的函數(shù)關(guān)系為,其圖像如圖所示.
(1)試分別求出生產(chǎn),兩種芯片的毛收入(千萬(wàn)元)與投入資金(千萬(wàn)元)的函數(shù)關(guān)系式;
(2)如果公司只生產(chǎn)一種芯片,生產(chǎn)哪種芯片毛收入更大?
(3)現(xiàn)在公司準(zhǔn)備投入億元資金同時(shí)生產(chǎn),兩種芯片,設(shè)投入千萬(wàn)元生產(chǎn)芯片,用表示公司所過利潤(rùn),當(dāng)為多少時(shí),可以獲得最大利潤(rùn)?并求最大利潤(rùn).(利潤(rùn)芯片毛收入芯片毛收入研發(fā)耗費(fèi)資金)
【答案】(1);(2)詳見解析;(3)千萬(wàn)元時(shí),公司所獲利潤(rùn)最大.最大利潤(rùn)千萬(wàn)元.
【解析】
(1)將 代入,求得的值,即可得到函數(shù)的解析式;
(2)由題意,根據(jù)和的大小關(guān)系,可進(jìn)行判定,得到答案.
(3)設(shè)投入千萬(wàn)元生產(chǎn)芯片,則投入千萬(wàn)元資金生產(chǎn)芯片,列出公司獲利的函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì),即可求解.
(1)設(shè)投入資金千萬(wàn)元,則生產(chǎn)芯片的毛收入;
將 代入,得
所以,生產(chǎn)芯片的毛收入.
(2)由,得;由,得;
由,得.
所以,當(dāng)投入資金大于千萬(wàn)元時(shí),生產(chǎn)芯片的毛收入大;
當(dāng)投入資金等于千萬(wàn)元時(shí),生產(chǎn)、芯片的毛收入相等;
當(dāng)投入資金小于千萬(wàn)元,生產(chǎn)芯片的毛收入大.
(3)公司投入億元資金同時(shí)生產(chǎn),兩種芯片,設(shè)投入千萬(wàn)元生產(chǎn)芯片,則投入千萬(wàn)元資金生產(chǎn)芯片.公司所獲利潤(rùn)
故當(dāng),即千萬(wàn)元時(shí),公司所獲利潤(rùn)最大.最大利潤(rùn)千萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】AC為對(duì)稱軸的拋物線的一部分,點(diǎn)B到邊AC的距離為2km,另外兩邊AC,BC的長(zhǎng)度分別為8km,2 km.現(xiàn)欲在此地塊內(nèi)建一形狀為直角梯形DECF的科技園區(qū).
(1)求此曲邊三角形地塊的面積;
(2)求科技園區(qū)面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】醫(yī)藥公司針對(duì)某種疾病開發(fā)了一種新型藥物,患者單次服用制定規(guī)格的該藥物后,其體內(nèi)的藥物濃度隨時(shí)間的變化情況(如圖所示):當(dāng)時(shí),與的函數(shù)關(guān)系式為(為常數(shù));當(dāng)時(shí),與的函數(shù)關(guān)系式為(為常數(shù)).服藥后,患者體內(nèi)的藥物濃度為,這種藥物在患者體內(nèi)的藥物濃度不低于最低有效濃度,才有療效;而超過最低中毒濃度,患者就會(huì)有危險(xiǎn).
(1)首次服藥后,藥物有療效的時(shí)間是多長(zhǎng)?
(2)首次服藥1小時(shí)后,可否立即再次服用同種規(guī)格的這種藥物?
(參考數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),已知曲線在點(diǎn)處的切線與直線平行
(Ⅰ)求的值;
(Ⅱ)是否存在自然數(shù),使得方程在內(nèi)存在唯一的根?如果存在,求出;如果不存在,請(qǐng)說明理由。
(Ⅲ)設(shè)函數(shù)(表示中的較小者),求的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《城市規(guī)劃管理意見》里面提出“新建住宅要推廣街區(qū)制,原則上不再建設(shè)封閉住宅小區(qū),已建成的封閉小區(qū)和單位大院要逐步打開”,這個(gè)消息在網(wǎng)上一石激起千層浪,各種說法不一而足.某網(wǎng)站為了解居民對(duì)“開放小區(qū)”認(rèn)同與否,從歲的人群中隨機(jī)抽取了人進(jìn)行問卷調(diào)查,并且做出了各個(gè)年齡段的頻率分布直方圖(部分)如圖所示,同時(shí)對(duì)人對(duì)這“開放小區(qū)”認(rèn)同情況進(jìn)行統(tǒng)計(jì)得到下表:
(Ⅰ)完成所給的頻率分布直方圖,并求的值;
(Ⅱ)如果從兩個(gè)年齡段中的“認(rèn)同”人群中,按分層抽樣的方法抽取6人參與座談會(huì),然后從這6人中隨機(jī)抽取2人作進(jìn)一步調(diào)查,求這2人的年齡都在內(nèi)的概率 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】邗江中學(xué)高二年級(jí)某班某小組共10人,利用寒假參加義工活動(dòng),已知參加義工活動(dòng)次數(shù)為1,2,3的人數(shù)分別為3,3,4.現(xiàn)從這10人中選出2人作為該組代表參加座談會(huì).
(1)記“選出2人參加義工活動(dòng)的次數(shù)之和為4”為事件,求事件發(fā)生的概率;
(2)設(shè)為選出2人參加義工活動(dòng)次數(shù)之差的絕對(duì)值,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義區(qū)間[x1 , x2]長(zhǎng)度為x2﹣x1(x2>x1),已知函數(shù)f(x)= (a∈R,a≠0)的定義域與值域都是[m,n],則區(qū)間[m,n]取最大長(zhǎng)度時(shí)a的值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】心理學(xué)家發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某高中數(shù)學(xué)興趣小組為了驗(yàn)證這個(gè)結(jié)論,從興趣小組中抽取50名同學(xué)(男30女20),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.選題情況如下表:(單位:人)
幾何題 | 代數(shù)題 | 合計(jì) | ||
男同學(xué) | 22 | 8 | 30 | |
女同學(xué) | 8 | 12 | 20 | |
合計(jì) | 30 | 20 | 50 |
(1)能否據(jù)此判斷有的把握認(rèn)為視覺和空間能力與性別有關(guān)?
(2)以上列聯(lián)表中女生選做幾何題的頻率作為概率,從該校1500名女生中隨機(jī)選6名女生,記6名女生選做幾何題的人數(shù)為,求的數(shù)學(xué)期望和方差.
附表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知().
(1)當(dāng)時(shí),求關(guān)于的不等式的解集;
(2)若f(x)是偶函數(shù),求k的值;
(3)在(2)條件下,設(shè),若函數(shù)與的圖象有公共點(diǎn),求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com