【題目】已知雙曲線 的兩條漸近線分別為l1 , l2 , 經(jīng)過右焦點F垂直于l1的直線分別交l1 , l2 于 A,B 兩點.若| |,| |,| |成等差數(shù)列,且 與 反向,則該雙曲線的離心率為( )
A.
B.
C.
D.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,圓C的參數(shù)方程 (φ為參數(shù)),以O(shè)為極點,x軸的非負半軸為極軸建立極坐標系.
(1)求圓C的極坐標方程;
(2)直線l的極坐標方程是2ρsin(θ+ )=3 ,射線OM:θ= 與圓C的交點為O、P,與直線l的交點為Q,求線段PQ的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知F1、F2分別是橢圓C: +y2=1的左、右焦點.
(1)若P是第一象限內(nèi)該橢圓上的一點, =﹣ ,求點P的坐標;
(2)設(shè)過定點M(0,2)的直線l與橢圓交于不同的兩點A,B,且∠AOB為銳角(其中O為坐標原點),求直線l的斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD= AD.E為棱AD的中點,異面直線PA與CD所成的角為90°.
(1)在平面PAB內(nèi)找一點M,使得直線CM∥平面PBE,并說明理由;
(2)若二面角P﹣CD﹣A的大小為45°,求二面角P﹣CE﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,城市缺水問題較為突出.某市政府為了鼓勵居民節(jié)約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標準x(噸),用水量不超過 x 的部分按平價收費,超出 x 的部分按議價收費.為了了解全市居民用水量的分布情況,通過抽樣,獲得了 100 位居民某年的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中 a 的值;
(Ⅱ)若該市政府希望使 85%的居民每月的用水量不超過標準 x(噸),估計 x 的值,并說明理由;
(Ⅲ)已知平價收費標準為 4 元/噸,議價收費標準為 8元/噸.當 x=3時,估計該市居民的月平均水費.(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代替)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱 中, ,A1B與AB1交于點D,A1C與AC1交于點E.求證:
(1)DE∥平面B1BCC1;
(2)平面 平面 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù) ,則下列結(jié)論正確的是( )
①f(x)的圖象關(guān)于直線 對稱
②f(x)的圖象關(guān)于點 對稱
③f(x)的圖象向左平移 個單位,得到一個偶函數(shù)的圖象
④f(x)的最小正周期為π,且在 上為增函數(shù).
A.③
B.①③
C.②④
D.①③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x+m|+|2x﹣1|(m∈R) (I)當m=﹣1時,求不等式f(x)≤2的解集;
(II)設(shè)關(guān)于x的不等式f(x)≤|2x+1|的解集為A,且[ ,2]A,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com