分析 推導(dǎo)出f(x)=-(x+2)(x+1),由此能求出f(x)的最大值.
解答 解:函數(shù)f(x)=$\frac{\frac{1}{6}•(-1)^{1+{C}_{2x}^{x}}•{A}_{x+2}^{5}}{1+{C}_{3}^{2}+{C}_{4}^{2}+…+{C}_{x-1}^{2}}$
=$\frac{\frac{1}{6}•(-1){•A}_{x+2}^{5}}{{C}_{x}^{3}}$
=-$\frac{\frac{1}{6}(x+2)(x+1)x(x-1)(x-2)}{\frac{1}{1×2×3}x(x-1)(x-2)}$
=-(x+2)(x+1)
=-x2-3x-2
=-(x+$\frac{3}{2}$)2+$\frac{1}{4}$.
∵x∈N,且x≥3,f(x)的減區(qū)間是[-$\frac{3}{2}$,+∞),
∴x=3時,f(x)max=f(3)=-(3+$\frac{3}{2}$)2+$\frac{1}{4}$=-20.
故答案為:-20.
點評 本題考查函數(shù)的最大值的求法,是中檔題,解題時要認(rèn)真審題,注意組合數(shù)公式的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 概率為$\frac{1}{7}$ | B. | 頻率為$\frac{1}{7}$ | C. | 頻率為7 | D. | 概率接近$\frac{1}{7}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com