【題目】哈師大附中高三學(xué)年統(tǒng)計甲、乙兩個班級一模數(shù)學(xué)分數(shù)(滿分150分),每個班級20名同學(xué),現(xiàn)有甲、乙兩班本次考試數(shù)學(xué)分數(shù)如下列莖葉圖所示:

(I)根據(jù)基葉圖求甲、乙兩班同學(xué)數(shù)學(xué)分數(shù)的中位數(shù),并將乙班同學(xué)的分數(shù)的頻率分布直方圖填充完整;

(Ⅱ)根據(jù)基葉圖比較在一?荚囍校、乙兩班同學(xué)數(shù)學(xué)分數(shù)的平均水平和分數(shù)的分散程度(不要求計算出具體值,給出結(jié)論即可)

(Ⅲ)若規(guī)定分數(shù)在的成績?yōu)榱己,分?shù)在的成績?yōu)閮?yōu)秀,現(xiàn)從甲、乙兩班成績?yōu)閮?yōu)秀的同學(xué)中,按照各班成績?yōu)閮?yōu)秀的同學(xué)人數(shù)占兩班總的優(yōu)秀人數(shù)的比例分層抽樣,共選出12位同學(xué)參加數(shù)學(xué)提優(yōu)培訓(xùn),求這12位同學(xué)中恰含甲、乙兩班所有140分以上的同學(xué)的概率.

【答案】(1)見解析.

(2) 乙班學(xué)生數(shù)學(xué)考試分數(shù)的平均水平高于甲班學(xué)生數(shù)學(xué)考試分數(shù)的平均水平;

甲班學(xué)生數(shù)學(xué)考試分數(shù)的分散程度高于乙班學(xué)生數(shù)學(xué)考試分數(shù)的分散程度.

(3) .

【解析】分析:第一問首先要明確中位數(shù)的概念按照所給的莖葉圖,按大小排序,找到第10個數(shù)與第11個數(shù),之后取兩數(shù)的平均數(shù),即為所求結(jié)果,再按照莖葉圖中所給的數(shù)據(jù),取判斷落在相應(yīng)范圍內(nèi)的數(shù)據(jù)的頻率,補全直方圖即可,第二問平均水平通過平均分比較,分散程度通過方差比較即可,第三問通過題中所給的條件,將對應(yīng)的基本事件以及滿足條件的基本事件找對,就能正確求得對應(yīng)事件的概率.

詳解:(1)甲班數(shù)學(xué)分數(shù)的中位數(shù):

乙班數(shù)學(xué)分數(shù)的中位數(shù):

(2)乙班學(xué)生數(shù)學(xué)考試分數(shù)的平均水平高于甲班學(xué)生數(shù)學(xué)考試分數(shù)的平均水平;

甲班學(xué)生數(shù)學(xué)考試分數(shù)的分散程度高于乙班學(xué)生數(shù)學(xué)考試分數(shù)的分散程度.

(3)有頻率分布直方圖可知:甲、乙兩班數(shù)學(xué)成績?yōu)閮?yōu)秀的人數(shù)分別為10、14,

若從中分層抽樣選出12人,則應(yīng)從甲、乙兩班各選出5人、7人,

設(shè)“選出的12人中恰含有甲、乙兩班的所有140分以上的同學(xué)”為事件A

所以選出的12人中恰含有甲、乙兩班的所有140分以上的同學(xué)的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的周期是.

1)求的單調(diào)遞增區(qū)間及對稱軸方程;

2)求上的最值及其對應(yīng)的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù).

1)已知的解集為,求實數(shù)的值;

2)已知,設(shè)是關(guān)于的方程的兩根,且,求實數(shù)的值;

3)已知滿足,且關(guān)于的方程的兩實數(shù)根分別在區(qū)間內(nèi),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且

(1)求的值;

(2)畫出圖像,并寫出單調(diào)遞增區(qū)間(不需要說明理由);

(3)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有下列說法:

①函數(shù)ycos(2x)的最小正周期是π;

②終邊在y軸上的角的集合是{α|αkZ};

③在同一直角坐標系中,函數(shù)ysinx的圖象和函數(shù)yx的圖象有三個公共點;

④函數(shù)ysin(x)[0,π]上是增函數(shù).其中,正確的說法是________.(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩隊學(xué)生參加“知識聯(lián)想”搶答賽,比賽規(guī)則:①主持人依次給出兩次提示,第一次提示后答對得2分,第二次提示后答對得1分,沒搶到或答錯者不得分;②主持人給出第一個提示后開始搶答,第一輪搶答出錯失去第二輪答題資格;③每局比賽分兩輪,若第一輪搶答者給出正確答案,則此局比賽結(jié)束,若第一輪答題者答錯,主持人提示后另一隊直接答題。如果甲、乙兩隊搶到答題權(quán)機會均等,并且勢均力敵,第一個提示后答對概率均為;第二個提示后答對概率均為為甲隊在一局比賽中的分.

(1)求甲在一局比賽中得分的分布列;

(2)若比賽共4局,求甲4局比賽中至少得6分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某四面體的六條棱長分別為3,3,2,2,2,2,則兩條較長棱所在直線所成角的余弦值為( )

A. 0B. C. 0或D. 以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售某種商品的經(jīng)驗表明,該商品每日的銷售量(單位:千克)與銷售價格(單位:元/千克)滿足,其中,為常數(shù).已知銷售價格為7/千克時,每日可售出該商品11千克.

1)求的值;

2)若該商品成本為5/千克,試確定銷售價格值,使商場每日銷售該商品所獲利潤最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】201829-25,23屆冬奧會在韓國平昌舉行.4年后,24屆冬奧會將在中國北京和張家口舉行.為了宣傳冬奧會,某大學(xué)在平昌冬奧會開幕后的第二天,從全校學(xué)生中隨機抽取了120名學(xué)生,對是否收看平昌冬奧會開幕式情況進行了問卷調(diào)查,統(tǒng)計數(shù)據(jù)如下:

(Ⅰ)根據(jù)上表說明,能否有的把握認為,收看開幕式與性別有關(guān)?

(Ⅱ)現(xiàn)從參與問卷調(diào)查且收看了開幕式的學(xué)生中,采用按性別分層抽樣的方法選取12人參加2022年北京冬奧會志愿者宣傳活動.

(ⅰ)問男、女學(xué)生各選取了多少人?

(ⅱ)若從這12人中隨機選取3人到校廣播站開展冬奧會及冰雪項目的宣傳介紹,設(shè)選取的3人中女生人數(shù)為,寫出的分布列,并求.

收看

沒收看

男生

60

20

女生

20

20

附:,其中.

查看答案和解析>>

同步練習(xí)冊答案