設(shè)正數(shù)x和y,則(x+y)(
1
x
+
4
y
)的最小值為
9
9
分析:把(x+y)(
1
x
+
4
y
)展開,利用不等式的基本性質(zhì)即可.
解答:解:∵x>0,y>0,
∴(x+y)(
1
x
+
4
y
)=5+
y
x
+
4x
y
5+2
y
x
×
4x
y
=9,當(dāng)且僅當(dāng)
y
x
=
4x
y
,即y=2x>0時(shí)取等號(hào).
∴(x+y)(
1
x
+
4
y
)的最小值為9.
故答案為9.
點(diǎn)評(píng):熟練掌握不等式的基本性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)若a2>b>a>1,則logb
b
a
,logba,logab從小到大依次為
logab>logba>logb
b
a
logab>logba>logb
b
a
;
(2)若2x=3y=5z,且x,y,z都是正數(shù),則2x,3y,5z從小到大依次為
3y<2x<5z
3y<2x<5z

(3)設(shè)x>0,且ax<bx<1(a>0,b>0),則a,b和1的大小關(guān)系為
a<b<1
a<b<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①如果復(fù)數(shù)z滿足|z+i|+|z-i|=2,則復(fù)數(shù)z在復(fù)平面上所對(duì)應(yīng)點(diǎn)的軌跡是橢圓.
②設(shè)f(x)是定義在R上的函數(shù),且對(duì)任意的x∈R,|f(x)|=|f(-x)|恒成立,則f(x)是R上的奇函數(shù)或偶函數(shù).
③已知曲線C:
x2
9
-
y2
16
=1
和兩定點(diǎn)E(-5,0)、F(5,0),若P(x,y)是C上的動(dòng)點(diǎn),則||PE|-|PF||<6.
④設(shè)定義在R上的兩個(gè)函數(shù)f(x)、g(x)都有最小值,且對(duì)任意的x∈R,命題“f(x)>0或g(x)>0”正確,則f(x)的最小值為正數(shù)或g(x)的最小值為正數(shù).
上述命題中錯(cuò)誤的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)若a2>b>a>1,則數(shù)學(xué)公式,logba,logab從小到大依次為________;
(2)若2x=3y=5z,且x,y,z都是正數(shù),則2x,3y,5z從小到大依次為________;
(3)設(shè)x>0,且ax<bx<1(a>0,b>0),則a,b和1的大小關(guān)系為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年四川省成都七中高三數(shù)學(xué)專項(xiàng)訓(xùn)練:反函數(shù)到奇偶性(解析版) 題型:解答題

(1)若a2>b>a>1,則,logba,logab從小到大依次為______;
(2)若2x=3y=5z,且x,y,z都是正數(shù),則2x,3y,5z從小到大依次為______;
(3)設(shè)x>0,且ax<bx<1(a>0,b>0),則a,b和1的大小關(guān)系為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案