【題目】如圖所示,在四棱錐P﹣ABCD中,四邊形ABCD為矩形,△PAD為等腰三角形,∠APD=90°,平面PAD⊥平面ABCD,且AB=1,AD=2,E,F(xiàn)分別為PC,BD的中點.
(1)證明:EF∥平面PAD;
(2)證明:直線PA⊥平面PCD.
【答案】
(1)證明:連結AC,則F也是AC的中點,
又E是PC的中點,∴EF∥PA,
又EF平面PAD,PA平面PAD,
∴EF∥平面PAD
(2)證明:∵平面PAD⊥平面ABCD,CD⊥AD,面PAD∩面ABCD=AD,∴CD⊥面PAD,
∵PA面PAD,∴CD⊥PA,
∵∠APD=90°,
∴PA⊥PD,
∵CD∩PD=D,
∴PA⊥平面PCD
【解析】(1)根據(jù)線面平行的判定定理進行證明即可.(2)證明CD⊥PA,PA⊥PD,運用線面垂直的定理可證明.
【考點精析】通過靈活運用直線與平面平行的判定和直線與平面垂直的判定,掌握平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;一條直線與一個平面內的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉化的數(shù)學思想即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知等比數(shù)列{an},a1=1,a6=32,Sn是等差數(shù)列{bn}的前n項和,b1=3,S5=35.
(1)求數(shù)列{an},{bn}的通項公式;
(2)設cn=an+bn , 求數(shù)列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,給出的是計算 + + +…+ 的值的程序框圖,其中判斷框內可填入的是( )
A.i≤2 021?
B.i≤2 019?
C.i≤2 017?
D.i≤2 015?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了檢測某種產品的質量(單位:千克),抽取了一個容量為N的樣本,整理得到的數(shù)據(jù)作出了頻率分布表和頻率分布直方圖如圖:
分組 | 頻數(shù) | 頻率 |
[17.5,20) | 10 | 0.05 |
[20,225) | 50 | 0.25 |
[22.5,25) | a | b |
[25,27.5) | 40 | c |
[27.5,30] | 20 | 0.10 |
合計 | N | 1 |
(Ⅰ)求出表中N及a,b,c的值;
(Ⅱ)求頻率分布直方圖中d的值;
(Ⅲ)從該產品中隨機抽取一件,試估計這件產品的質量少于25千克的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ACB中,∠ACB=90°,BC=2AC,分別以A、B為圓心,AC的長為半徑作扇形ACD和扇形BEF,D、E在AB上,F(xiàn)在BC上.在△ACB中任取一點,這一點恰好在圖中陰影部分的概率是( )
A.
B.1﹣
C.
D.1﹣
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)求函數(shù)f(x)的最小正周期和單調增區(qū)間;
(2)函數(shù)f(x)的圖象可以由函數(shù)y=sin2x(x∈R)的圖象經過怎樣的變換得到?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,PA⊥平面ABCD,AD∥BC,AD=2BC,AB⊥BC,點E為PD中點.
(1)求證:AB⊥PD;
(2)求證:CE∥平面PAB.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com