設函數(shù)的最大值為,最小值為,其中
(1)求、的值(用表示);
(2)已知角的頂點與平面直角坐標系中的原點重合,始邊與軸的正半軸重合,終邊經(jīng)過點.求的值.

(1),;(2).

解析試題分析:(1)本小題主要考查二次函數(shù)圖像與性質(zhì),通過判斷對稱軸與區(qū)間的位置關系確定最值的位置,然后代入化簡來求;(2) 本小題主要考查三角函數(shù)的定義、同角三角函數(shù)基本關系式,由(1)可分析得,三角函數(shù)定義求,然后根據(jù)商的關系化為正切來求.
試題解析:(1) 由題可得     3分
所以,                6分
(2)角終邊經(jīng)過點,則         10分
所以, =           14分
考點:二次函數(shù)圖像與性質(zhì)、三角函數(shù)的定義、同角三角函數(shù)基本關系式

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,已知橢圓的離心率,且橢圓C上一點到點Q的距離最大值為4,過點的直線交橢圓于點
(Ⅰ)求橢圓C的方程;
(Ⅱ)設P為橢圓上一點,且滿足(O為坐標原點),當時,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)圖象上一點處的切線方程為.
(1)求的值;
(2)若方程內(nèi)有兩個不等實根,求的取值范圍(其中為自然對數(shù)的底數(shù));(3)令,若的圖象與軸交于(其中),的中點為,求證:處的導數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當時,是否存在整數(shù),使不等式恒成立?若存在,求整數(shù)的值;若不存在,請說明理由;
(3)關于的方程上恰有兩個相異實根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

定義在上的函數(shù),當時,,且對任意的 ,有
(Ⅰ)求證:;
(Ⅱ)求證:對任意的,恒有;
(Ⅲ)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

函數(shù).若的定義域為,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在半徑為、圓心角為的扇形的弧上任取一點,作扇形的內(nèi)接矩形,使點上,點上,設矩形的面積為

(Ⅰ)按下列要求求出函數(shù)關系式:
①設,將表示成的函數(shù)關系式;
②設,將表示成的函數(shù)關系式;
(Ⅱ)請你選用(1)中的一個函數(shù)關系式,求出的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)某沿海地區(qū)養(yǎng)殖的一種特色海鮮上市時間僅能持續(xù)5個月,預測上市初期和后期會因供應不足使價格呈持續(xù)上漲態(tài)勢,而中期又將出現(xiàn)供大于求,使價格連續(xù)下跌.現(xiàn)有三種價格模擬函數(shù):①;②;③.(以上三式中均為常數(shù),且
(1)為準確研究其價格走勢,應選哪種價格模擬函數(shù)(不必說明理由)
(2)若,求出所選函數(shù)的解析式(注:函數(shù)定義域是.其中表示8月1日,表示9月1日,…,以此類推);
(3)在(2)的條件下研究下面課題:為保證養(yǎng)殖戶的經(jīng)濟效益,當?shù)卣媱澰趦r格下跌期間積極拓寬外銷,請你預測該海鮮將在哪幾個月份內(nèi)價格下跌.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)和點,過點作曲線的兩條切線、,切點分別為、
(Ⅰ)設,試求函數(shù)的表達式;
(Ⅱ)是否存在,使得三點共線.若存在,求出的值;若不存在,請說明理由.
(Ⅲ)在(Ⅰ)的條件下,若對任意的正整數(shù),在區(qū)間內(nèi)總存在個實數(shù),使得不等式成立,求的最大值.

查看答案和解析>>

同步練習冊答案