如圖,在△ABC中,∠C為鈍角,點E,H是邊AB上的點,點K和M分別是邊AC和BC上的點,且AH=AC,EB=BC,AE=AK,BH=BM,
(Ⅰ)求證:E,H,M,K四點共圓;
(Ⅱ)若KE=EH,CE=3,求線段KM的長。
(Ⅰ)證明:連接CH,
∵AC=AH,AK=AE,
∴四邊形CHEK為等腰梯形,
注意到等腰梯形的對角互補,
故C,H,E,K四點共圓,
同理C,E,H,M四點共圓,
即E,H,M,K均在點C,E,H所確定的圓上,
證畢;
(Ⅱ)解:連接EM,
由(Ⅰ)得E,H,M,C,K五點共圓,
∵CEHM為等腰梯形,
∴EM=HC,故∠MKE=∠CEH,
由KE=EH 可得∠KME=∠ECH,
故△MKE≌△CEH,
即KM=EC=3為所求。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,已知∠ABC=90°,AB上一點E,以BE為直徑的⊙O恰與AC相切于點D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直徑BE的長;
(2)計算:△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,D是邊AC上的點,且AB=AD,2AB=
3
BD,BC=2BD,則sinC的值為( 。
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,設(shè)
AB
=a
AC
=b
,AP的中點為Q,BQ的中點為R,CR的中點恰為P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC為鄰邊,AP為對角線,作平行四邊形ANPM,求平行四邊形ANPM和三角形ABC的面積之比
S平行四邊形ANPM
S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,∠B=45°,D是BC邊上的一點,AD=5,AC=7,DC=3.
(1)求∠ADC的大。
(2)求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,已知
BD
=2
DC
,則
AD
=( 。

查看答案和解析>>

同步練習(xí)冊答案