橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
與拋物線C2:x2=2py(p>0)的一個交點為M,拋物線C2在點M處的切線過橢圓C1的右焦點F.
(Ⅰ)若M(2,
2
5
5
)
,求C1和C2的標準方程;
(II)求橢圓C1離心率的取值范圍.
分析:(Ⅰ)先根據(jù)M在拋物線C2上,求出拋物線方程,進而得到C2在點M處的切線方程求出右焦點F的坐標,再結(jié)合M在橢圓C1上即可求出橢圓C1的標準方程;
(II)先設M(x0,
1
2p
x0 2)
,由y=
1
2p
x2
y=
1
p
x
,進而得到C2在點M處的切線方程求出右焦點F的坐標;再結(jié)合M在橢圓C1上以及p>0求出a,b之間的關系即可得到橢圓C1離心率的取值范圍.
解答:解:(Ⅰ)把M(2,
2
5
5
)
代入C2:x2=2py(p>0)得p=
5

故C2x2=2
5
y
(2分)
y=
5
10
x2
y=
5
5
x
,從而C2在點M處的切線方程為y-
2
5
5
=
2
5
5
(x-2)
(3分)
令y=0有x=1,F(xiàn)(1,0),(4分)
又M (2,
2
5
5
)
在橢圓C1上 
所以
4
a2
+
4
5b2
=1
a2-b2=1
,解得a2=5,b2=4,故C1
x2
5
+
y2
4
=1
(6分)
(Ⅱ)設M(x0,
1
2p
x0 2)
,由y=
1
2p
x2
y=
1
p
x
,
從而C2在點M處的切線方程為y-
x02
2p
=
x0
p
(x-x0)
(8分)
設F(c,0),代入上式得x0=2c,
因為
x02
a2
+
y02
b2
=1
,
所以y02=b2(1-
x02
a2
)=b2(1-
4c2
a2
)=
b2
a2
(4b2-3a2)
(10分)
又x02=2py0,所以p=
x 02
2y0
=
2c2
b
a
4b2-3a2
=
2a(a2-b2)
b
4b2-3a2
,(11分)
從而4b2>3a2,即4c2<a2,e2
1
4
,e<
1
2
,
所以橢圓C1離心率的取值范圍為0<e<
1
2
.(13分)
點評:本題主要考查直線與圓錐曲線的綜合問題.其中涉及到拋物線以及橢圓標準方程的求法,考查了基本的分析問題的能力和基礎的運算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)設橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點分別是F1、F2,下頂點為A,線段OA的中點為B(O為坐標原點),如圖.若拋物線C2:y=x2-1與y軸的交點為B,且經(jīng)過F1,F(xiàn)2點.
(Ⅰ)求橢圓C1的方程;
(Ⅱ)設M(0,-
4
5
),N為拋物線C2上的一動點,過點N作拋物線C2的切線交橢圓C1于P、Q兩點,求△MPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點F2與拋物線C2y2=4x的焦點重合,橢圓C1與拋物線C2在第一象限的交點為P,|PF2|=
5
3
,求橢圓C1的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•三門峽模擬)已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的長軸長為4,離心率為
1
2
,F(xiàn)1、F2分別為其左右焦點.一動圓過點F2,且與直線x=-1相切.
(Ⅰ)(ⅰ)求橢圓C1的方程; (ⅱ)求動圓圓心C軌跡的方程;
(Ⅱ)在曲線上C有兩點M、N,橢圓C1上有兩點P、Q,滿足MF2
NF2
共線,
PF2
QF2
共線,且
PF2
MF2
=0,求四邊形PMQN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C1
x2
A2
+
y2
B2
=1(A>B>0)
和雙曲線C2
x2
a2
-
y2
b2
=1(a>0,b>0)
有相同的焦點F1、F2,2c是它們的共同焦距,且它們的離心率互為倒數(shù),P是它們在第一象限的交點,當cos∠F1PF2=60°時,下列結(jié)論中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•汕頭一模)已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點分別為F1、F2,右頂點為A,離心率e=
1
2

(1)設拋物線C2:y2=4x的準線與x軸交于F1,求橢圓的方程;
(2)設已知雙曲線C3以橢圓C1的焦點為頂點,頂點為焦點,b是雙曲線C3在第一象限上任意-點,問是否存在常數(shù)λ(λ>0),使∠BAF1=λ∠BF1A恒成立?若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案