某中學(xué)舉行了一次“社會主義核心價值觀知識競賽”活動,為了解本次競賽中學(xué)生成績情況,從全體學(xué)生中隨機(jī)抽取了部分學(xué)生的分?jǐn)?shù)(得分取整數(shù)且不低于50分,滿分100分),作為樣本(樣本容量為n)進(jìn)行統(tǒng)計.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖(如圖1),并作出莖葉圖(圖2)(圖中僅列出了[50,60),(90,100]這兩組的數(shù)據(jù)).

(Ⅰ)求樣本容量n和頻率分布直方圖中的x,y;
(Ⅱ)在選取的樣本中,從樣本中競賽成績80分以上(含80分)的同學(xué)中隨機(jī)抽取2名同學(xué)到市政廣場參加社會主義核心價值觀知識宣傳志愿者活動.求所抽取的2名同學(xué)來自不同組的概率.
考點:列舉法計算基本事件數(shù)及事件發(fā)生的概率,頻率分布直方圖
專題:概率與統(tǒng)計
分析:(Ⅰ)根據(jù)頻率分布直方圖的性質(zhì)求得樣本容量n和頻率分布直方圖中x、y的值.
(Ⅱ)由題意可知,分?jǐn)?shù)在[80,90)有5人,分別記為a,b,c,d,e,分?jǐn)?shù)在[90,100)有2人,分別記為F,G,用列舉法求得所有的抽法有21種,而滿足條件的抽法有10種,由此求得所求事件的概率.
解答: 解:(Ⅰ)由題意可知,樣本容量n=
8
0.016×10
=50,y=
2
50×10
=0.004,x=0.1-0.004-0.010-0.016-0.04=0.030.
(Ⅱ)由題意可知,分?jǐn)?shù)在[80,90)有5人,分別記為a,b,c,d,e,分?jǐn)?shù)在[90,100)有2人,分別記為F,G.
從競賽成績是80(分)以上(含80分)的同學(xué)中隨機(jī)抽取2名同學(xué)有如下種情形:(a,b),(a,c),(a,d),(a,e),(a,F(xiàn)),(a,G),(b,c),(b,d),(b,e),(b,F(xiàn)),(b,G),(c,d),(c,e),(c,F(xiàn)),(c,G),(d,e),(d,F(xiàn)),(d,G),(e,F(xiàn)),(e,G),(F,G),共有21個基本事件;
其中符合“抽取的2名同學(xué)來自不同組”的基本事件有(a,F(xiàn)),(a,G),(b,F(xiàn)),(b,G),(c,F(xiàn)),(c,G),(d,F(xiàn)),(d,G),(e,F(xiàn)),(e,G),共10個,所以抽取的2名同學(xué)來自不同組的概率P=
10
21
點評:本題主要考查等可能事件的概率,頻率分布直方圖的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若sinA=
4
5
,且A是三角形的一個內(nèi)角,求
5sinA+8
15cosA-7
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,圓C的方程為x2+y2-8x+15=0,若直線y=kx-2上至少存在一點,使得以該點為圓心,1為半徑的圓與圓C有公共點,則k的取值范圍是(  )
A、[0,
4
3
]
B、(0,
4
3
C、[-
4
3
,
4
3
]
D、(0,
4
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩個等差數(shù)列{an}的和{bn}的前n項和分別為Sn和Tn,已知
Sn
Tn
=
5n-9
n+3
,則使an=tbn成立的正整數(shù)t的個數(shù)是( 。
A、3B、6C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x-1
x-2
的定義域為( 。
A、(1,+∞)
B、[1,2)∪(2,+∞)
C、[1,2)
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用二分法求方程2x+x-8=0在區(qū)間(2,3)內(nèi)的實數(shù)解(精確度為0.1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從某居民區(qū)隨機(jī)抽取10個家庭,獲得第i個家庭的月收入xi(單位:千克)與月儲蓄yi(單位:千元)的數(shù)據(jù)資料,計算得
10
i=1
xi=80,
10
i=1
yi=20,
10
i=1
xiyi=184,
10
i=1
xi2=720.
(Ⅰ)求家庭的月儲蓄y關(guān)于月收入x的線性回歸方程
y
=
b
x+
a
,并判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān);
(Ⅱ)若該居民區(qū)某家庭月收入為7千元,預(yù)測該家庭的月儲蓄.
注:線性回歸方程
y
=
b
x+
a
中,
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
,其中
.
x
,
.
y
為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的方程為:x2+y2+4y-21=0,直線l的方程為:(2m-1)x-(m+1)y+3m=0,(m∈R).
(1)若圓C上恰有3個點到直線l的距離為3,求直線l的方程:
(2)求直線l被圓C截得的弦長最短時m的值及最短弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

同步練習(xí)冊答案