拋物線y2=ax(a≠0)的焦點(diǎn)到其準(zhǔn)線的距離是( 。
A、
|a|
4
B、
|a|
2
C、|a|
D、-
a
2
分析:先根據(jù)拋物線的標(biāo)準(zhǔn)方程求得P,則拋物線的焦點(diǎn)和準(zhǔn)線方程可得,進(jìn)而利用點(diǎn)到直線的距離求得答案.
解答:解:根據(jù)拋物線方程可求得p=
|a|
2
,
∴焦點(diǎn)為(
a
2
,0),準(zhǔn)線方程為x=-
a
2

或焦點(diǎn)為(-
a
2
,0),準(zhǔn)線方程為x=
a
2

∴焦點(diǎn)到準(zhǔn)線的距離為p=
|a|
2
,
故選B
點(diǎn)評(píng):本題主要考查了拋物線的簡(jiǎn)單性質(zhì).屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)斜率為2的直線l過(guò)拋物線y2=ax(a>0)的焦點(diǎn)F,且和y軸交于點(diǎn)A,若△OAF(O為坐標(biāo)原點(diǎn))的面積為4,則拋物線的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)拋物線y2=ax(a>0)的焦點(diǎn),F(xiàn)作一直線交拋物線于A、B兩點(diǎn),若線段AF、BF的長(zhǎng)分別為m、n,則
m+n
mn
等于( 。
A、2a
B、
1
4a
C、
1
2a
D、
4
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l與拋物線y2=ax(a>0)交于A、B兩點(diǎn),則以線段AB為直徑的圓經(jīng)過(guò)拋物線頂點(diǎn)O的充要條件是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=ax(a>0)與直線x=1圍成的封閉圖形的面積為
43
,若直線l與該拋物線相切,且平行于直線2x-y+6=0,則直線l的方程為
16x-8y+1=0
16x-8y+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•安徽模擬)拋物線y2=ax(a>0)上橫坐標(biāo)為6點(diǎn)到焦點(diǎn)的距離為10,則a=
16
16

查看答案和解析>>

同步練習(xí)冊(cè)答案