【題目】現(xiàn)有某高新技術(shù)企業(yè)年研發(fā)費(fèi)用投入(百萬元)與企業(yè)年利潤(rùn)(百萬元)之間具有線性相關(guān)關(guān)系,近5年的年科研費(fèi)用和年利潤(rùn)具體數(shù)據(jù)如下表:

年科研費(fèi)用(百萬元)

1

2

3

4

5

企業(yè)所獲利潤(rùn)(百萬元)

2

3

4

4

7

(1)畫出散點(diǎn)圖;

(2)求對(duì)的回歸直線方程;

3)如果該企業(yè)某年研發(fā)費(fèi)用投入8百萬元,預(yù)測(cè)該企業(yè)獲得年利潤(rùn)為多少?

參考公式:用最小二乘法求回歸方程的系數(shù)計(jì)算公式:

【答案】(1)見解析(2) (3)9.5百萬元

【解析】試題分析:(1)根據(jù)表格中的數(shù)據(jù),在坐標(biāo)系中描出點(diǎn),將點(diǎn)連起來,就畫出了散點(diǎn)圖;(2)根據(jù)題目中的數(shù)據(jù)計(jì)算出,代入平均值,即可得到回歸方程;(3)將,代入回歸方程即可得到預(yù)測(cè)值。

解析:

(1)散點(diǎn)圖

2)由題意可知,

, ,

根據(jù)公式,可求得,

故所求回歸直線的方程為;

3)令,得到預(yù)測(cè)值(百萬元)

答:如果該企業(yè)某年研發(fā)費(fèi)用投入8百萬元,預(yù)測(cè)該企業(yè)獲得年利潤(rùn)為9.5百萬元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥底面ABCDADAB,ABDC,ADDCAP2,AB1,點(diǎn)E為棱PC的中點(diǎn).

(1)證明:BEDC;

(2)求直線BE與平面PBD所成角的正弦值;

(3)F為棱PC上一點(diǎn),滿足BFAC,求二面角FABP的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 )的通徑(過焦點(diǎn)且垂直于對(duì)稱軸的弦)長(zhǎng)為,橢圓 )的離心率為,且過拋物線的焦點(diǎn).

(1)求拋物線和橢圓的方程;

(2)過定點(diǎn)引直線交拋物線兩點(diǎn)(的左側(cè)),分別過、作拋物線的切線 ,且與橢圓相交于、兩點(diǎn),記此時(shí)兩切線 的交點(diǎn)為.

①求點(diǎn)的軌跡方程;

②設(shè)點(diǎn),求的面積的最大值,并求出此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):

單價(jià)x(元)

8

8.2

8.4

8.6

8.8

9

銷量y(件)

90

84

83

80

75

68

(1)求回歸直線方程=bx+a;(其中,,,,);

(2)預(yù)計(jì)在今后的銷售中,銷量與單價(jià)仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤(rùn),該產(chǎn)品的單價(jià)應(yīng)定為多少元?(利潤(rùn)=銷售收入-成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖三棱柱中,側(cè)面為菱形,

(1)證明: ;

(2)若, ,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,一動(dòng)直線l過與圓相交于.兩點(diǎn),中點(diǎn),l與直線m:相交于.

(1)求證:當(dāng)l與m垂直時(shí),l必過圓心;

(2)當(dāng)時(shí),求直線l的方程;

(3)探索是否與直線l的傾斜角有關(guān),若無關(guān),請(qǐng)求出其值;若有關(guān),請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過拋物線y2=4x焦點(diǎn)F的直線l交拋物線于A、B兩點(diǎn)(點(diǎn)A在第一象限),若 =3 ,則直線l的方程為(
A.x﹣2y﹣1=0
B.2x﹣y﹣2=0
C.x﹣ y﹣1=0
D. x﹣y﹣ =0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=

(Ⅰ)求函數(shù)f(x)的定義域;

(Ⅱ)判定f(x)的奇偶性并證明;

(Ⅲ)用函數(shù)單調(diào)性定義證明:f(x)在(1,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 處有極值.

(Ⅰ)求a的值;

(Ⅱ)求f(x)在上的最大值和最小值;

(Ⅲ)在下面的坐標(biāo)系中作出上的圖象,若方程 上有2個(gè)不同的實(shí)數(shù)解,結(jié)合圖象求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案