18.若實數(shù)x,y滿足條件$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-2≥0}\\{x-1≤0}\end{array}\right.$則z=-$\frac{5}{4x+3y}$的最大值為( 。
A.-$\frac{15}{8}$B.-$\frac{5}{4}$C.-$\frac{1}{2}$D.-1

分析 約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,由圖看出直線4x+3y=0平行的直線過可行域內(nèi)A點時z有最大值,把C點坐標代入目標函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-2≥0}\\{x-1≤0}\end{array}\right.$作可行域如圖,
由z=-$\frac{5}{4x+3y}$的最大值可知,4x+3y取得最大值時,
z取得最大值,
與4x+3y=0,平行的準線經(jīng)過A時,即:$\left\{\begin{array}{l}{x=1}\\{x-y+1=0}\end{array}\right.$
可得A(1,2),4x+3y取得最大值,故z最大,
即:zmax=$-\frac{5}{4×1+3×2}$=$-\frac{1}{2}$.
故選:C.

點評 本題考查了簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

8.在△ABC中,$\overrightarrow{AD}=\frac{1}{4}\overrightarrow{AB\;},\;E$為BC邊的中點,設$\overrightarrow{AB\;}$=$\overrightarrow a$,$\overrightarrow{AC}$=$\overrightarrow b$,若$\overrightarrow{DE\;}$=$x\overrightarrow a+y\overrightarrow b$,則x+y=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.設函數(shù)f(x)=2cos2ωx-1(ω>0),將y=f(x)的圖象向右平移$\frac{π}{3}$個單位長度后,所得圖象與原圖角重合,則ω的最小值等于( 。
A.1B.3C.6D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.在△ABC中,角A,B,C所對的邊分別為a,b,c,$asinB=\sqrt{2}sinC,cosC=\frac{1}{3}$,△ABC的面積為4,則c=6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設Sn為數(shù)列{an}的前項和,已知a1≠0,2an-a1=S1•Sn,n∈N+
(1)求a1,并求證數(shù)列{an}為等比數(shù)列;
(2)求數(shù)列{nan}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)f(x)=-x2-6x-3,g(x)=$\frac{{e}^{x}+ex}{ex}$,實數(shù)m,n滿足m<n<0,若?x1∈[m,n],?x2∈(0,+∞),使得f(x1)=g(x2)成立,則n-m的最大值為(  )
A.4B.2$\sqrt{3}$C.4$\sqrt{3}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x+2y-4≥0}\\{x-y+3≥0}\\{2x+y-3≤0}\end{array}\right.$,則$\frac{y}{x-3}$的最小值為( 。
A.$\frac{1}{3}$B.-$\frac{1}{2}$C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.3+5+7+…+(2n+7)=n2+8n+15.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若一個幾何體的三視圖如圖所示,則這個幾何體的外接球的表面積為( 。
A.34πB.$\frac{80π}{3}$C.$\frac{91}{3}π$D.114π

查看答案和解析>>

同步練習冊答案