已知P(0,1),O(0,0),A(1,0)為平面直角坐標(biāo)系內(nèi)的三點,若過點P的直線l與線段OA有公共點,則直線l的傾斜角的取值范圍是( 。
A、[0,
π
4
]
B、[
π
4
,
π
2
]
C、[
π
2
4
]
D、[
4
,π)
考點:直線的傾斜角
專題:直線與圓
分析:如圖所示:根據(jù)直線PA的方程求出PA的傾斜角等于135°,根據(jù)OP的方程求出OP的傾斜角等于90°,結(jié)合圖象由條件可得 直線l的傾斜角α的取值范圍.
解答: 解:如圖所示:直線PA的方程為y+x=1,斜率等于-1,傾斜角等于135°,
OP的方程為 x=0,傾斜角等于90°,
結(jié)合圖象由條件可得 直線l的傾斜角α的取值范圍是 90°≤α≤135°,
α∈[
π
2
4
].
故選:C.
點評:本題主要考查直線的傾斜角和斜率的關(guān)系,以及傾斜角的取值范圍,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知(3-2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,則a1+a2+a3+a4的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,已知單位圓的圓心與坐標(biāo)原點重合,且與x軸正半軸交于點A,圓上一點P(-
3
2
,
1
2
),則劣弧
AP
的弧長為(  )
A、
π
6
B、
π
3
C、
3
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
ex-1
x2-1
的圖象為(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項均為正數(shù)的等比數(shù)列{an},a1,a2+2,a3構(gòu)成等差數(shù)列,且a1=1,則等比數(shù)列{an}的公比為( 。
A、3或-1B、1C、-1D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓方程為
x2
a2
+
y2
b2
=1(a>0,b>0),其右焦點為F(4,0),過點F的直線交橢圓與A,B兩點.若AB的中點坐標(biāo)為(1,-1),則橢圓的方程為( 。
A、
x2
45
+
y2
36
=1
B、
x2
12
+
y2
4
=1
C、
x2
24
+
y2
8
=1
D、
x2
18
+
y2
9
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

運行如圖的程序框圖,輸出的S為(  )
A、7B、10C、11D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義max{a,b}=
a,a≥b
b,a<b
(a,b∈R),若實數(shù)x,y滿足
x+2y≤6
2x+y≤6
x≥0,y≥0
,則z=max{2x+3y-1,x+2y+2}的取值范圍是(  )
A、[2,5]
B、[2,9]
C、[5,9]
D、[-1,9]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
(1+i)2
1+i
(i為虛數(shù)單位)的虛部為( 。
A、1B、-1C、±1D、0

查看答案和解析>>

同步練習(xí)冊答案