設(shè)a、b是任意向量,λ、μ是實數(shù),則實數(shù)與向量的積適合以下運算律:①結(jié)合律        ,②第一分配律        ,③第二分配律        .

      

①λ(μa)=(λμ)a、(λ+μ)a=λa+μa、郐(a+b)=λa+λb

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
,
b
是任意的兩個向量,λ∈R,給出下面四個結(jié)論:
①若
a
b
共線,則
b
a
;
②若
b
=-λ
a
,則
a
b
共線;③若
a
b
,則
a
b
共線;
④當
b
≠0時,
a
b
共線的充要條件是有且只有一個實數(shù)λ=λ1,使得
a
1
b

其中正確的結(jié)論有( 。
A、①②B、①③
C、①③④D、②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列幾個命題:①若
a
b
-
c
都是非零向量,則“
a
b
=
a
c
”是“
a
⊥(
b
-
c
)
”的充要條件;②已知等腰△ABC的腰為底的2倍,則頂角A的正切值是
15
7
;③在平面直角坐標系xoy中,四邊形ABCD的邊AB∥DC,AD∥BC,已知點A(-2,0),B(6,8),C(8,6),則D點的坐標為(0,-1);④設(shè)
a
,
b
,
c
為同一平面內(nèi)具有相同起點的任意三個非零向量,且滿足
a
b
不共線,
a
c
,|
a
|=|
c
|,則|
b
c
|的值一定等于以
a
,
b
為鄰邊的平行四邊形的面積.其中正確命題的序號是
 
.(寫出全部正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
,
b
,
c
是任意的三個非零平面向量,且他們相互不共線,給出下列命題
①(
a
b
c
=(
c
a
b
;
②|
a
|-|
b
|<|
a
-
b
|;
③(3
a
+2
b
)•(3
a
-2
b
)=9|
a
|
2
-4|
b
|
2
;
④(
c
b
a
-(
c
a
b
不與
c
垂直.
其中正確的有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)
a
,
b
是任意的兩個向量,λ∈R,給出下面四個結(jié)論:
①若
a
b
共線,則
b
a
;
②若
b
=-λ
a
,則
a
b
共線;③若
a
b
,則
a
b
共線;
④當
b
≠0時,
a
b
共線的充要條件是有且只有一個實數(shù)λ=λ1,使得
a
1
b

其中正確的結(jié)論有( 。
A.①②B.①③C.①③④D.②③④

查看答案和解析>>

同步練習(xí)冊答案