已知:對?x∈R+,a<x+
1
x
恒成立,則a的取值范圍是
 
考點:全稱命題
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)基本不等式進行求解即可.
解答: 解:當(dāng)x>0時,x+
1
x
≥2,當(dāng)且僅當(dāng)x=1時取等號,
則a<2,
故答案為:(-∞,2)
點評:本題主要考查函數(shù)最值的求解,利用基本不等式求出最值是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
2x+1;x≥2
2-x;x<2
,如圖所示為任意輸入x的值,求其對應(yīng)的函數(shù)值y的程序框圖,則(1)處應(yīng)填
 
,(2)處應(yīng)填
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知θ∈(0,π),且sin(θ-
π
4
)=
2
10
,則tan2θ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y為正實數(shù),且x+2y=3.則
3x+y
xy
的最小值為
 
; 則
2x(y+1)
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
m
=(2cos(x+
π
2
),cosx),
n
=(cosx,2sin(x+
π
2
)),且函數(shù)f(x)=
m
n
+1
(1)設(shè)方程f(x)-1=0在(0,π)內(nèi)有兩個零點x1,x2,求x1+x2的值;
(2)若把函數(shù)y=f(x)的圖象向左平移
π
6
個單位,再向下平移2個單位,得函數(shù)g(x)圖象,求函數(shù)g(x)在[-
π
2
π
2
]上的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的方程cos2x+sinx-a=0有實數(shù)解,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
cosx
ln|x|
的圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的偶函數(shù),對任意的x∈R,都有f(x+6)=f(x)+f(3)成立,若f(5)=2,則f(2009)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x+2|-2|x-1|
(1)解不等式f(x)≥-2;
(2)對任意x∈[a,+∞),都有f(x)≤x-a成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案