如圖所示,在正方體中,E 是的中點

(1)求直線 BE 和平面所成的角的正弦值,
(2)在上是否存在一點 F,使從平面?證明你的結論.
(1) (2)存在,見解析
(1)如圖(a),取AA1的中點M,連接EM,BM,因為E是DD1的中點,四邊形ADD1A1為正方形,所以EM∥AD.
又在正方體ABCD-A1B1C1D1中.AD⊥平面ABB1A1,所以EM⊥面ABB1A1,從而BM為直線BE在平面ABB1A1上的射影,
∠EBM直線BE與平面ABB1A1所成的角.
設正方體的棱長為2,則EM=AD=2,BE==3,
于是在Rt△BEM中,sin∠EBM
即直線BE與平面ABB1A1所成的角的正弦值為
(2)在棱C1D1上存在點F,使B1F平面A1BE,
事實上,如圖(b)所示,分別取C1D1和CD的中點F,G,連接EG,BG,CD1,F(xiàn)G,
因A1D1∥B1C1∥BC,且A1D1=BC,所以四邊形A1BCD1為平行四邊形,
因此D1C∥A1B,又E,G分別為D1D,CD的中點,所以EG∥D1C,從而EG∥A1B,這說明A1,B,G,E共面,所以BG?A1BE
因四邊形C1CDD1與B1BCC1皆為正方形,F(xiàn),G分別為C1D1和CD的中點,所以FG∥C1C∥B1G,且FG=C1C=B1B,因此四邊形B1BGF為平行四邊形,所以B1F∥BG,而B1F?平面A1BE,BG?平面A1BE,故B1F∥平面A1BE.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

是兩條不同的直線,、是兩個不同的平面,則下列命題中真命題是
(    )
A.B.
C.D.,

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

、、是空間四個不同的點,在下列命題中,不正確的是(   )
A.若共面,則共面
B.若是異面直線,則是異面直線
C.若,則
D.若,,則

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知四棱錐的底面是邊長為4的正方形,分別為中點。
(1)證明:。
(2)求三棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,正方體中, 的中點為,的中點為,則異
面直線所成的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在長方體ABCD—A1B1C1D1中,過長方體的頂點A與長方體12條棱所成的角都相等的平面有     (    )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在如圖所示的幾何體中,四邊形為平行四邊形,,⊥平面,,.
(1)若是線段的中點,求證:∥平面;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在直三棱柱中, ,點分別是棱的中點,則異面直線所成角是(  )度
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

假設一個四棱錐的正視圖和側視圖為兩個完全相同的等腰直角三角形(如圖所示),腰長為1,則該四棱錐的體積為        

查看答案和解析>>

同步練習冊答案