【題目】已知函數(shù)f(x)=(a+1)lnx+ x2(a<﹣1)對任意的x1、x2>0,恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,則a的取值范圍為 .
【答案】(﹣∞,﹣2]
【解析】解:由f′(x)= + x,
得f′(1)=3a+1,
所以f(x)=(a+1)lnx+ax2 , (a<﹣1)在(0,+∞)單調(diào)遞減,不妨設(shè)0<x1<x2 ,
則f(x1)﹣f(x2)≥4x2﹣4x1 , 即f(x1)+4x1≥f(x2)+4x2 ,
令F(x)=f(x)+4x,F(xiàn)′(x)=f′(x)+4= +2ax+4,
等價于F(x)在(0,+∞)上單調(diào)遞減,
故F'(x)≤0恒成立,即 +2ax+4≤0,
所以 恒成立,
得a≤﹣2.
所以答案是:(﹣∞,﹣2].
【考點(diǎn)精析】根據(jù)題目的已知條件,利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識可以得到問題的答案,需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在(0,+∞)上的函數(shù)f(x)滿足f(2x)=x2-2x.
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)若關(guān)于x的方程f(x)=在(1,4)上有實(shí)根,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在點(diǎn)M(1,f(1))處的切線方程為
求(1)實(shí)數(shù)a,b的值;
(2)函數(shù)的單調(diào)區(qū)間及在區(qū)間[0,3]上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題: ,命題: .
(1)若,求實(shí)數(shù)的值;
(2)若是的充分條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】心理學(xué)家通過研究學(xué)生的學(xué)習(xí)行為發(fā)現(xiàn);學(xué)生的接受能力與老師引入概念和描述問題所用的時間相關(guān),教學(xué)開始時,學(xué)生的興趣激增,學(xué)生的興趣保持一段較理想的狀態(tài),隨后學(xué)生的注意力開始分散,分析結(jié)果和實(shí)驗(yàn)表明,用表示學(xué)生掌握和接受概念的能力, x表示講授概念的時間(單位:min),可有以下的關(guān)系:
(1)開講后第5min與開講后第20min比較,學(xué)生的接受能力何時更強(qiáng)一些?
(2)開講后多少min學(xué)生的接受能力最強(qiáng)?能維持多少時間?
(3)若一個新數(shù)學(xué)概念需要55以上(包括55)的接受能力以及13min時間,那么老師能否在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講授完這個概念?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓經(jīng)過點(diǎn),和直線相切,且圓心在直線上.
(1)求圓的方程;
(2)已知直線經(jīng)過原點(diǎn),并且被圓截得的弦長為2,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, .
(1)若函數(shù)的單調(diào)遞減區(qū)間為,求函數(shù)的圖象在點(diǎn)處的切線方程;
(2)若不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)判斷函數(shù)的奇偶性并求函數(shù)的零點(diǎn);
(Ⅱ)寫出的單調(diào)區(qū)間;(只需寫出結(jié)果)
(Ⅲ)試討論方程的根的情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,半圓C的極坐標(biāo)方程為ρ=2cosθ,θ∈[0, ]
(1)求C的參數(shù)方程;
(2)設(shè)點(diǎn)D在半圓C上,半圓C在D處的切線與直線l:y= x+2垂直,根據(jù)(1)中你得到的參數(shù)方程,求直線CD的傾斜角及D的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com