【題目】已知,圖中直棱柱的底面是菱形,其中.又點分別在棱上運動,且滿足:,.
(1)求證:四點共面,并證明∥平面.
(2)是否存在點使得二面角的余弦值為?如果存在,求出的長;如果不存在,請說明理由.
【答案】(1)見解析(2)不存在點使之成立.見解析
【解析】
(1) 在線段上分別取點,使得,進而得到與即可.
(2) 以為原點,分別以,及過且與平行的直線為軸建立空間直角坐標系,再求解平面的法向量與平面的法向量,再設,,再根據二面角的計算方法分析是否存在使得二面角為的余弦值為即可.
解:(1)證法1:在線段上分別取點,使得,易知四邊形是平行四邊形,所以,聯結,
則,且
所以四邊形為矩形,故,同理,
且,故四邊形是平行四邊形,所以,所以
故四點共面
又,平面,平面,
所以平面.
證法2:因為直棱柱的底面是菱形,∴,底面,設交點為,以為原點,分別以,及過且與平行的直線為軸建立空間直角坐標系.則有,,,,設,,則,,,,,,所以,故四點共面.又,平面,平面,所以平面.
(2)平面中向量,,設平面的一個法向量為,則,可得其一個法向量為.
平面中,,,設平面的一個法向量為
,則,所以取其一個法向量.
若,則,
即有,,解得,故不存在點使之成立.
科目:高中數學 來源: 題型:
【題目】某工廠,兩條相互獨立的生產線生產同款產品,在產量一樣的情況下,通過日常監(jiān)控得知,,生產線生產的產品為合格品的概率分別為和.
(1)從,生產線上各抽檢一件產品,若使得產品至少有一件合格的概率不低于99.5%,求的最小值;
(2)假設不合格的產品均可進行返工修復為合格品,以(1)中確定的作為的值.
①已知,生產線的不合格品返工后每件產品可分別挽回損失5元和3元,若從兩條生產線上各隨機抽檢1000件產品,以挽回損失的平均數為判斷依據,估計哪條生產線的挽回損失較多?
②若最終的合格品(包括返工修復后的合格品)按照一、二、三等級分類后,每件可分別獲利10元、8元、6元,現從,生產線的最終合格品中各隨機抽取100件進行分級檢測,結果統計如圖所示,用樣本的頻率分布估計總體分布,記該工廠生產一件產品的利潤為,求的分布列并估計該廠產量2000件時利潤的期望值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數方程為(為參數).以原點為極點,以軸為非負半軸為極軸建立極坐標系,兩坐標系相同的長度單位.圓的方程為被圓截得的弦長為.
(Ⅰ)求實數的值;
(Ⅱ)設圓與直線交于點,若點的坐標為,且,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知線段是過拋物線的焦點F的一條弦,過點A(A在第一象限內)作直線垂直于拋物線的準線,垂足為C,直線與拋物線相切于點A,交x軸于點T,給出下列命題:
(1);
(2);
(3).
其中正確的命題個數為( )
A.B.C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了研究某學科成績是否與學生性別有關,采用分層抽樣的方法,從高三年級抽取了30名男生和20名女生的該學科成績,得到如下所示男生成績的頻率分布直方圖和女生成績的莖葉圖,規(guī)定80分以上為優(yōu)分(含80分).
(Ⅰ)(i)請根據圖示,將2×2列聯表補充完整;
優(yōu)分 | 非優(yōu)分 | 總計 | |
男生 | |||
女生 | |||
總計 | 50 |
(ii)據此列聯表判斷,能否在犯錯誤概率不超過10%的前提下認為“該學科成績與性別有關”?
(Ⅱ)將頻率視作概率,從高三年級該學科成績中任意抽取3名學生的成績,求至少2名學生的成績?yōu)閮?yōu)分的概率.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com