【題目】如圖①:在平行四邊形中,,,將沿對角線折起,使,連結,得到如圖②所示三棱錐.
(1)證明:平面;
(2)若,二面角的平面角的正切值為,求直線與平面所成角的正弦值.
【答案】(1)證明見解析(2)
【解析】
(1)證明,從而證明平面,進而得出,即可證平面.最后證得平面.
(2)若,二面角的平面角的正切值為,由(1)知平面,
因為平面,所以,
又,所以即為二面角的平面角,得,從而求出,,建立空間直角坐標系,求平面的法向量為,
最后根據(jù)公式,即得直線與平面所成角大小.
(1)證明:在平行四邊形中,,
則.
在三棱錐中,因為,.
所以平面,所以.
又,,所以平面.
又平面,所以.
因為,,所以平面.
(2)解:由(1)知平面,
因為平面,所以,
又,所以即為二面角的平面角,即.
因為平面,平面.
所以,故,
又.所以.
在平行四邊形,,,
所以與為相似三角形,則,
故(),解得,
故,解得,
所以,.
過點作,以為坐標原點,,,的方向為軸、軸、軸的正方向,建立空間直角坐標系,如圖所示.
則,,,.
所以,,.
設平面的法向量為,
則
令,得.
設直線與平面所成角為,
即直線與平面所成角為.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓過點,且其離心率為,過坐標原點作兩條互相垂直的射線與橢圓分別相交于,兩點.
(1)求橢圓的方程;
(2)是否存在圓心在原點的定圓與直線總相切?若存在,求定圓的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓:的離心率為,橢圓上一點到左右兩個焦點、的距離之和是4.
(1)求橢圓的方程;
(2)已知過的直線與橢圓交于、兩點,且兩點與左右頂點不重合,若,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知x與y之間的幾組數(shù)據(jù)如表:
x | 1 | 2 | 3 | 4 |
y | 1 | m | n | 4 |
如表數(shù)據(jù)中y的平均值為2.5,若某同學對m賦了三個值分別為1.5,2,2.5,得到三條線性回歸直線方程分別為,,,對應的相關系數(shù)分別為,,,下列結論中錯誤的是( )
參考公式:線性回歸方程中,其中,.相關系數(shù).
A.三條回歸直線有共同交點B.相關系數(shù)中,最大
C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a,b,c均為正數(shù),設函數(shù)f(x)=|x﹣b|﹣|x+c|+a,x∈R.
(1)若a=2b=2c=2,求不等式f(x)<3的解集;
(2)若函數(shù)f(x)的最大值為1,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有邊長均為1的正方形正五邊形正六邊形及半徑為1的圓各一個,在水平桌面上無滑動滾動一周,它們的中心的運動軌跡長分別為,,,,則( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司對旗下的甲、乙兩個門店在1至9月份的營業(yè)額(單位:萬元)進行統(tǒng)計并得到如圖折線圖.
下面關于兩個門店營業(yè)額的分析中,錯誤的是( )
A.甲門店的營業(yè)額折線圖具有較好的對稱性,故而營業(yè)額的平均值約為32萬元
B.根據(jù)甲門店的營業(yè)額折線圖可知,該門店營業(yè)額的平均值在[20,25]內
C.根據(jù)乙門店的營業(yè)額折線圖可知,其營業(yè)額總體是上升趨勢
D.乙門店在這9個月份中的營業(yè)額的極差為25萬元
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某小區(qū)為了調查本小區(qū)業(yè)主對物業(yè)服務滿意度的真實情況,對本小區(qū)業(yè)主進行了調查,調查中問了兩個問題1:你的手機尾號是不是奇數(shù)?問題2:你是否滿意物業(yè)的服務?調查者設計了一個隨機化裝置,其中裝有大小、形狀和質量完全相同的白球和紅球,每個被調查者隨機從裝置中摸到紅球和白球的可能性相同,其中摸到白球的業(yè)主回答第一個問題,摸到紅球的業(yè)主回答第二個問題,回答“是”的人往一個盒子中放一個小石子,回答“否”的人什么都不要做由于問題的答案只有“是”和“否”,而且回答的是哪個問題別人并不知道,因此被調查者可以毫無顧慮地給出符合實際情況的答案.已知某小區(qū)80名業(yè)主參加了問卷,且有47名業(yè)主回答了“是”,由此估計本小區(qū)對物業(yè)服務滿意的百分比大約為( )
A.85%B.75%C.63.5%D.67.5%
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2020年春節(jié)突如其來的新型冠狀病毒肺炎在湖北爆發(fā),一方有難八方支援,全國各地的白衣天使走上戰(zhàn)場的第一線,某醫(yī)院抽調甲、乙兩名醫(yī)生,抽調、、三名護士支援武漢第一醫(yī)院與第二醫(yī)院,參加武漢疫情狙擊戰(zhàn)其中選一名護士與一名醫(yī)生去第一醫(yī)院,其它都在第二醫(yī)院工作,則醫(yī)生甲和護士被選在第一醫(yī)院工作的概率為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com