【題目】已知數(shù)列是首項(xiàng)為正數(shù)的等差數(shù)列,數(shù)列的前項(xiàng)和為.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
【答案】(1);(2).
【解析】試題分析:(1)根據(jù)數(shù)列的前項(xiàng)和為,令、列出關(guān)于首項(xiàng) ,公差 的方程組,解得、的值,即可得結(jié);(2)由(1)知,利用錯(cuò)位相減法求和即可求得數(shù)列的前項(xiàng)和.
試題解析:(1)設(shè)數(shù)列的公差為,
令得,所以.
令得,所以.
解得,所以
(2)由(1)知所以
所以
兩式相減,得
所以
【 方法點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)、等比數(shù)列的求和公式以及錯(cuò)位相減法求數(shù)列的前 項(xiàng)和,屬于中檔題.一般地,如果數(shù)列是等差數(shù)列, 是等比數(shù)列,求數(shù)列的前項(xiàng)和時(shí),可采用“錯(cuò)位相減法”求和,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解, 在寫出“”與“” 的表達(dá)式時(shí)應(yīng)特別注意將兩式“錯(cuò)項(xiàng)對(duì)齊”以便下一步準(zhǔn)確寫出“”的表達(dá)式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A,B兩地的距離是120km,按交通法規(guī)規(guī)定,A,B兩地之間的公路車速應(yīng)限制在50~100km/h,假設(shè)汽油的價(jià)格是6元/升,以xkm/h速度行駛時(shí),汽車的耗油率為 ,司機(jī)每小時(shí)的工資是36元,那么最經(jīng)濟(jì)的車速是多少?如果不考慮其他費(fèi)用,這次行車的總費(fèi)用是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4;坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)中,曲線.
(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程.
(Ⅱ)求曲線上的點(diǎn)到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一元二次不等式﹣x2+x+2>0的解集是( )
A.{x|x<﹣1或x>2}
B.{x|x<﹣2或x>1}
C.{x|﹣1<x<2}
D.{x|﹣2<x<1}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線, ,則下列說法正確的是( )
A. 把上各點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線
B. 把上各點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線
C. 把曲線向右平移個(gè)單位長(zhǎng)度,再把得到的曲線上各點(diǎn)橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到曲線
D. 把曲線向右平移個(gè)單位長(zhǎng)度,再把得到的曲線上各點(diǎn)橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到曲線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分)設(shè)關(guān)于的一元二次方程 ()有兩根和,且滿足.
(1)試用表示;
(2)求證:數(shù)列是等比數(shù)列;
(3)當(dāng)時(shí),求數(shù)列的通項(xiàng)公式,并求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量 =(cosθ,sinθ), =(﹣ , );
(1)若 ∥ ,且θ∈(0,π),求θ;
(2)若|3 + |=| ﹣3 |,求| + |的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)調(diào)查和預(yù)測(cè),投資債券等穩(wěn)鍵型產(chǎn)品A的收益與投資成正比,其關(guān)系如圖1所示;投資股票等風(fēng)險(xiǎn)型產(chǎn)品B的收益與投資的算術(shù)平方根成正比,其關(guān)系如圖2所示(收益與投資單位:萬元).
(1)分別將A、B兩種產(chǎn)品的收益表示為投資的函數(shù)關(guān)系式;
(2)該家庭現(xiàn)有10萬元資金,并全部投資債券等穩(wěn)鍵型產(chǎn)品A及股票等風(fēng)險(xiǎn)型產(chǎn)品B兩種產(chǎn)品,問:怎樣分配這10萬元投資,才能使投資獲得最大收益,其最大收益為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln (x+1)- -x,a∈R.
(1)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com