【題目】如圖1,在中,,,,分別是,,中點(diǎn),,.現(xiàn)將沿折起,如圖2所示,使二面角為,是的中點(diǎn).
(1)求證:面面;
(2)求直線與平面所成的角的正弦值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.已知b=acosC+3bsin(B+C).
(1)若 ,求角A;
(2)在(1)的條件下,若△ABC的面積為 ,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ,若函數(shù)的圖象與軸的交點(diǎn)個(gè)數(shù)不少于2個(gè),則實(shí)數(shù)的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某書(shū)店剛剛上市了《中國(guó)古代數(shù)學(xué)史》,銷(xiāo)售前該書(shū)店擬定了5種單價(jià)進(jìn)行試銷(xiāo),每種單價(jià)(元)試銷(xiāo)l天,得到如表單價(jià)(元)與銷(xiāo)量(冊(cè))數(shù)據(jù):
單價(jià)(元) | 18 | 19 | 20 | 21 | 22 |
銷(xiāo)量(冊(cè)) | 61 | 56 | 50 | 48 | 45 |
(l)根據(jù)表中數(shù)據(jù),請(qǐng)建立關(guān)于的回歸直線方程:
(2)預(yù)計(jì)今后的銷(xiāo)售中,銷(xiāo)量(冊(cè))與單價(jià)(元)服從(l)中的回歸方程,已知每?jī)?cè)書(shū)的成本是12元,書(shū)店為了獲得最大利潤(rùn),該冊(cè)書(shū)的單價(jià)應(yīng)定為多少元?
附:,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若都是從集合中任取的一個(gè)數(shù),求函數(shù)有零點(diǎn)的概率;
(2)若都是從區(qū)間上任取的一個(gè)數(shù),求成立的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修44:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中中,曲線的參數(shù)方程為為參數(shù),). 以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.
(Ⅰ)求曲線C的普通方程和直線的直角坐標(biāo)方程;
(Ⅱ)設(shè)是曲線上的一個(gè)動(dòng)點(diǎn),當(dāng)時(shí),求點(diǎn)到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義域?yàn)?/span>的奇函數(shù).
(1)求實(shí)數(shù)的值并判斷函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)家劉徽在《九章算術(shù)注》中提出割圓術(shù):“割之彌細(xì),所失彌少,割之割,以至于不可割,則與圓合體,而無(wú)所失矣”,即通過(guò)圓內(nèi)接正多邊形細(xì)割圓,并使正多邊形的面積無(wú)限接近圓的面積,進(jìn)而來(lái)求得較為精確的圓周率.如果用圓的內(nèi)接正邊形逼近圓,算得圓周率的近似值記為,那么用圓的內(nèi)接正邊形逼近圓,算得圓周率的近似值加可表示成( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱柱中,底面是等腰梯形, ,,是線段的中點(diǎn),平面.
(1)求證:平面;
(2)若,求平面和平面所成的銳二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com