【題目】如圖1,在中,,,,分別是,中點(diǎn),,.現(xiàn)將沿折起,如圖2所示,使二面角,的中點(diǎn).

1)求證:面

2)求直線與平面所成的角的正弦值.

【答案】(1)見(jiàn)解析(2)

【解析】

1)證明得到面.

2)先判斷為直線與平面所成的角,再計(jì)算其正弦值.

1)證明:法一:由已知得:,,∴.

,∴.

,∴,又∵,∴

,,∴.

,∴.

又∵中點(diǎn),∴,∴,∴.

,∴面.

法二:同法一得.

又∵,,,∴.

同理,,.

∴面.

,,∴.

又∵中點(diǎn),∴,∴,∴.

,∴面.

2)由(1)知,∴為直線在平面上的射影.

為直線與平面所成的角,

,∴二面角的平面角是.

,∴,∴.

又∵,∴.中,.

中,.

∴在中,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.已知b=acosC+3bsin(B+C).
(1)若 ,求角A;
(2)在(1)的條件下,若△ABC的面積為 ,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,若函數(shù)的圖象與軸的交點(diǎn)個(gè)數(shù)不少于2個(gè),則實(shí)數(shù)的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某書(shū)店剛剛上市了《中國(guó)古代數(shù)學(xué)史》,銷(xiāo)售前該書(shū)店擬定了5種單價(jià)進(jìn)行試銷(xiāo),每種單價(jià)(元)試銷(xiāo)l天,得到如表單價(jià)(元)與銷(xiāo)量(冊(cè))數(shù)據(jù):

單價(jià)(元)

18

19

20

21

22

銷(xiāo)量(冊(cè))

61

56

50

48

45

(l)根據(jù)表中數(shù)據(jù),請(qǐng)建立關(guān)于的回歸直線方程:

(2)預(yù)計(jì)今后的銷(xiāo)售中,銷(xiāo)量(冊(cè))與單價(jià)(元)服從(l)中的回歸方程,已知每?jī)?cè)書(shū)的成本是12元,書(shū)店為了獲得最大利潤(rùn),該冊(cè)書(shū)的單價(jià)應(yīng)定為多少元?

附:,,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若都是從集合中任取的一個(gè)數(shù),求函數(shù)有零點(diǎn)的概率;

(2)若都是從區(qū)間上任取的一個(gè)數(shù),求成立的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修44:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中中,曲線的參數(shù)方程為為參數(shù),). 以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.

(Ⅰ)求曲線C的普通方程和直線的直角坐標(biāo)方程;

(Ⅱ)設(shè)是曲線上的一個(gè)動(dòng)點(diǎn),當(dāng)時(shí),求點(diǎn)到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是定義域?yàn)?/span>的奇函數(shù).

(1)求實(shí)數(shù)的值并判斷函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)家劉徽在《九章算術(shù)注》中提出割圓術(shù):“割之彌細(xì),所失彌少,割之割,以至于不可割,則與圓合體,而無(wú)所失矣”,即通過(guò)圓內(nèi)接正多邊形細(xì)割圓,并使正多邊形的面積無(wú)限接近圓的面積,進(jìn)而來(lái)求得較為精確的圓周率.如果用圓的內(nèi)接正邊形逼近圓,算得圓周率的近似值記為,那么用圓的內(nèi)接正邊形逼近圓,算得圓周率的近似值加可表示成( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱柱中,底面是等腰梯形, ,,是線段的中點(diǎn),平面.

(1)求證:平面;

(2)若,求平面和平面所成的銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案