已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的焦點分別為F1,F(xiàn)2,若該橢圓上存在一點P使得∠F1PF2=60°,則橢圓離心率的取值范圍是______.
如圖,當動點P在橢圓長軸端點處沿橢圓弧向短軸端點運動時,P對兩個焦點的張角∠F1PF2漸漸增大,當且僅當P點位于短軸端點P0處時,張角∠F1PF2達到最大值.由此可得:
∵存在點P為橢圓上一點,使得∠F1PF2=60°,
∴△P0F1F2中,∠F1P0F2≥60°,
∴Rt△P0OF2中,∠OP0F2≥30°,
所以P0O≤
3
OF2,即b≤
3
c,
∴a2-c2≤3c2,可得a2≤4c2
c
a
1
2
,
∵0<e<1,
1
2
≤e<1

故答案為:
1
2
≤e<1

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

已知過橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0)的焦點F(-1,0)的弦AB的中點M的坐標是(-
2
3
,
1
3
),則橢圓E的方程是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設P是橢圓
x2
169
+
y2
144
=1
上一點,F(xiàn)1、F2是橢圓的焦點,若|PF1|等于4,則|PF2|等于( 。
A.22B.21C.20D.13

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知F1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的兩個焦點,若存在點P為橢圓上一點,使得∠F1PF2=60°,則橢圓離心率e的取值范圍是( 。
A.
2
2
≤e<1
B.0<e<
2
2
C.
1
2
≤e<1
D.
1
2
≤e<
2
2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知動點P在橢圓
x2
25
+
y2
16
=1上,若A點坐標為(3,0),且|
AM
|=1,且
PM
AM
=0,則|
PM
|的最小值是( 。
A.
2
B.
3
C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(理)已知F1,F(xiàn)2是橢圓
x2
100
+
y2
64
=1
的焦點,P為橢圓上一點,且F1PF2=
π
3
,求△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓
x2
4
+
y2
3
=1
的兩焦點為F1,F(xiàn)2,點P是橢圓內(nèi)部的一點,則|PF1|+|PF2|的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點F到過頂點A(-a,0)、B(0,b)的直線的距離等于
7
7
b
,則橢圓的離心率為(  )
A.
1
2
B.
4
5
C.
7-
7
6
D.
7
7

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓
x2
m2
+
y2
3-m
=1
的一個焦點為(0,1),則m的值為(  )
A.1B.
-1±
17
2
C.-2或1D.以上均不對

查看答案和解析>>

同步練習冊答案