【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)討論函數(shù)的單調(diào)性;
(Ⅲ)對(duì)于任意,,都有,求實(shí)數(shù)的取值范圍.
【答案】(Ⅰ);(Ⅱ)分類討論,詳見解析;(Ⅲ).
【解析】
(Ⅰ)當(dāng)時(shí),求出可得切線的斜率,從而得到切線方程.
(Ⅱ)求出后就討論其符號(hào)后可得函數(shù)的單調(diào)區(qū)間.
(Ⅲ)就、、、 、分類討論后可得的最大值和最小值,從而得到關(guān)于的不等式組,其解即為所求的取值范圍.
解:(Ⅰ)當(dāng)時(shí),因?yàn)?/span>
所以,.
又因?yàn)?/span>,
所以曲線在點(diǎn)處的切線方程為.
(Ⅱ)因?yàn)?/span>,
所以.
令,解得或.
若,當(dāng)即或時(shí),
故函數(shù)的單調(diào)遞增區(qū)間為;
當(dāng)即時(shí),故函數(shù)的單調(diào)遞減區(qū)間為.
若,則,
當(dāng)且僅當(dāng)時(shí)取等號(hào),故函數(shù)在上是增函數(shù).
若,當(dāng)即或時(shí),
故函數(shù)的單調(diào)遞增區(qū)間為;
當(dāng)即時(shí),故函數(shù)的單調(diào)遞減區(qū)間為.
綜上,時(shí),函數(shù)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;
時(shí),函數(shù)單調(diào)遞增區(qū)間為;
時(shí),函數(shù)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.
(Ⅲ) 由題設(shè),只要即可.
令,解得或.
當(dāng)時(shí),隨變化, 變化情況如下表:
減 | 極小值 | 增 |
由表可知,此時(shí) ,不符合題意.
當(dāng)時(shí),隨變化, 變化情況如下表:
|
|
| |||||
增 | 極大值 | 減 | 極小值 | 增 |
由表可得,
且,,
因,所以只需,
即 ,解得.
當(dāng)時(shí),由(Ⅱ)知在為增函數(shù),
此時(shí),符合題意.
當(dāng)時(shí),
同理只需,即 ,解得.
當(dāng)時(shí),,,不符合題意.
綜上,實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱錐D-ABC中,,E,F分別為DB,AB的中點(diǎn),且.
(1)求證:平面平面ABC;
(2)求二面角D-CE-F的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某服裝加工廠為了提高市場(chǎng)競(jìng)爭(zhēng)力,對(duì)其中一臺(tái)生產(chǎn)設(shè)備提出了甲、乙兩個(gè)改進(jìn)方案:甲方案是引進(jìn)一臺(tái)新的生產(chǎn)設(shè)備,需一次性投資1000萬元,年生產(chǎn)能力為30萬件;乙方案是將原來的設(shè)備進(jìn)行升級(jí)改造,需一次性投入700萬元,年生產(chǎn)能力為20萬件.根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),該產(chǎn)品的年銷售量的頻率分布直方圖如圖所示,無論是引進(jìn)新生產(chǎn)設(shè)備還是改造原有的生產(chǎn)設(shè)備,設(shè)備的使用年限均為6年,該產(chǎn)品的銷售利潤(rùn)為15元/件(不含一次性設(shè)備改進(jìn)投資費(fèi)用).
(1)根據(jù)年銷售量的頻率分布直方圖,估算年銷量的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)將年銷售量落入各組的頻率視為概率,各組的年銷售量用該組區(qū)間的中點(diǎn)值作年銷量的估計(jì)值,并假設(shè)每年的銷售量相互獨(dú)立.
①根據(jù)頻率分布直方圖估計(jì)年銷售利潤(rùn)不低于270萬元的概率:
②若以該生產(chǎn)設(shè)備6年的凈利潤(rùn)的期望值作為決策的依據(jù),試判斷該服裝廠應(yīng)選擇哪個(gè)方案.(6年的凈利潤(rùn)=6年銷售利潤(rùn)-設(shè)備改進(jìn)投資費(fèi)用)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某購(gòu)物商場(chǎng)分別推出支付寶和微信“掃碼支付”購(gòu)物活動(dòng),活動(dòng)設(shè)置了一段時(shí)間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用“掃碼支付”.現(xiàn)統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)每天使用掃碼支付的人次,用表示活動(dòng)推出的天數(shù),表示每天使用掃碼支付的人次,統(tǒng)計(jì)數(shù)據(jù)如下表所示:
(1)根據(jù)散點(diǎn)圖判斷,在推廣期內(nèi),掃碼支付的人次關(guān)于活動(dòng)推出天數(shù)的回歸方程適合用來表示,求出該回歸方程,并預(yù)測(cè)活動(dòng)推出第天使用掃碼支付的人次;
(2)推廣期結(jié)束后,商場(chǎng)對(duì)顧客的支付方式進(jìn)行統(tǒng)計(jì),結(jié)果如下表:
支付方式 | 現(xiàn)金 | 會(huì)員卡 | 掃碼 |
比例 |
商場(chǎng)規(guī)定:使用現(xiàn)金支付的顧客無優(yōu)惠,使用會(huì)員卡支付的顧客享受折優(yōu)惠,掃碼支付的顧客隨機(jī)優(yōu)惠,根據(jù)統(tǒng)計(jì)結(jié)果得知,使用掃碼支付的顧客,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為.現(xiàn)有一名顧客購(gòu)買了元的商品,根據(jù)所給數(shù)據(jù)用事件發(fā)生的頻率來估計(jì)相應(yīng)事件發(fā)生的概率,估計(jì)該顧客支付的平均費(fèi)用是多少?
參考數(shù)據(jù):設(shè),,,
參考公式:對(duì)于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車因綠色、環(huán)保、健康的出行方式,在國(guó)內(nèi)得到迅速推廣.最近,某機(jī)構(gòu)在某地區(qū)隨機(jī)采訪了10名男士和10名女士,結(jié)果男士、女士中分別有7人、6人表示“經(jīng)常騎共享單車出行”,其他人表示“較少或不選擇騎共享單車出行”.
(1)從這些男士和女士中各抽取一人,求至少有一人“經(jīng)常騎共享單車出行”的概率;
(2)從這些男士中抽取一人,女士中抽取兩人,記這三人中“經(jīng)常騎共享單車出行”的人數(shù)為,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,圓,動(dòng)圓P與圓M外切并且與圓N內(nèi)切,圓心P的軌跡為曲線C.
(1)求曲線C的方程;
(2)設(shè)不經(jīng)過點(diǎn)的直線l與曲線C相交于A,B兩點(diǎn),直線QA與直線QB的斜率均存在且斜率之和為-2,證明:直線l過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的兩個(gè)頂點(diǎn)的坐標(biāo)分別為,,且所在直線的斜率之積等于,記頂點(diǎn)的軌跡為.
(Ⅰ)求頂點(diǎn)的軌跡的方程;
(Ⅱ)若直線與曲線交于兩點(diǎn),點(diǎn)在曲線上,且為的重心(為坐標(biāo)原點(diǎn)),求證:的面積為定值,并求出該定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com