若拋物線
的焦點(diǎn)是雙曲線
的一個(gè)焦點(diǎn),則正數(shù)
等于( )
易求得雙曲線
的焦點(diǎn)坐標(biāo)為
,
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045308948457.png" style="vertical-align:middle;" />
所以
故
故選
【考點(diǎn)】拋物線和雙曲線的幾何性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(已知拋物線
(
)的準(zhǔn)線與
軸交于點(diǎn)
.
(1)求拋物線的方程,并寫出焦點(diǎn)坐標(biāo);
(2)是否存在過焦點(diǎn)的直線
(直線與拋物線交于點(diǎn)
,
),使得三角形
的面積
?若存在,請(qǐng)求出直線
的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓C:
+
=1
的離心率為
,左焦點(diǎn)為F(-1,0),
(1)設(shè)A,B分別為橢圓的左、右頂點(diǎn),過點(diǎn)F且斜率為k的直線L與橢圓C交于M,N兩點(diǎn),若
,求直線L的方程;
(2)橢圓C上是否存在三點(diǎn)P,E,G,使得S
△OPE=S
△OPG=S
△OEG=
?
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,圓
與直線
相切于點(diǎn)
,與
正半軸交于點(diǎn)
,與直線
在第一象限的交點(diǎn)為
.點(diǎn)
為圓
上任一點(diǎn),且滿足
,動(dòng)點(diǎn)
的軌跡記為曲線
.
(1)求圓
的方程及曲線
的方程;
(2)若兩條直線
和
分別交曲線
于點(diǎn)
、
和
、
,求四邊形
面積的最大值,并求此時(shí)的
的值.
(3)證明:曲線
為橢圓,并求橢圓
的焦點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,設(shè)橢圓
的左、右焦點(diǎn)分別為
,點(diǎn)
在橢圓上,
,
,
的面積為
.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)圓心在
軸上的圓與橢圓在
軸的上方有兩個(gè)交點(diǎn),且圓在這兩個(gè)交點(diǎn)處的兩條切線相互垂直并分別過不同的焦點(diǎn),求圓的半徑..
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
、
為橢圓
的左右焦點(diǎn),點(diǎn)
為其上一點(diǎn),且有
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)過
的直線
與橢圓
交于
、
兩點(diǎn),過
與
平行的直線
與橢圓
交于
、
兩點(diǎn),求四邊形
的面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
過拋物線y
2=8x的焦點(diǎn)F作傾斜角為135°的直線交拋物線于A,B兩點(diǎn),則弦AB的長(zhǎng)為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
拋物線
的焦點(diǎn)為F,過F作直線交拋物線于A、B兩點(diǎn),設(shè)
則
( )
A.4 B.8 C.
D.1
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
M:
=1(
a>
b>0)的短半軸長(zhǎng)
b=1,且橢圓上一點(diǎn)與橢圓的兩個(gè)焦點(diǎn)構(gòu)成的三角形的周長(zhǎng)為6+4
.
(1)求橢圓
M的方程;
(2)設(shè)直線
l:
x=
my+
t與橢圓
M交于
A,
B兩點(diǎn),若以
AB為直徑的圓經(jīng)過橢圓的右頂點(diǎn)
C,求
t的值.
查看答案和解析>>