-1.則.②若正整數(shù)m和n滿足m≤n.則.③設(shè)P為圓O1:x2+y2=9上任一點(diǎn).圓O2以Q(a.b)為圓心且半徑為1.當(dāng)2=1時(shí).圓O1與圓O2相切.其中假命題的個(gè)數(shù)為2 (D)3">
給出下列三個(gè)命題:

①若a≥b>-1,則.

②若正整數(shù)m和n滿足m≤n,則.

③設(shè)P(x1,y1)為圓O1:x2+y2=9上任一點(diǎn),圓O2以Q(a,b)為圓心且半徑為1.

當(dāng)(a-x1)2+(b-y1)2=1時(shí),圓O1與圓O2相切.

其中假命題的個(gè)數(shù)為

(A)0     (B)1      (C)2     (D)3

B

解析:∵ab>-1,∴a+1≥b+1>0,

a(1+b)≥b(1+aab.

ab成立,∴.

故命題①是真命題.

∵0<mn,∴nm≥0.

當(dāng)nm=0時(shí), =0,>0,

.

當(dāng)nm>0時(shí), =.

∴命題②是真命題.

∵(ax12+(by12=1,

∴圓O2的圓心與圓O1的圓心距離是1.

如下圖所示知,圓O2與圓O1可能相割,

∴命題③是假命題.故選B.

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于函數(shù)f(x)=sinx(cosx-sinx)+
1
2
,給出下列三個(gè)命題:
(1)函數(shù)f(x)在區(qū)間[
π
2
,
8
]
上是減函數(shù);
(2)直線x=
π
8
是函數(shù)f(x)的圖象的一條對(duì)稱軸;
(3)函數(shù)f(x)的圖象可以由函數(shù)y=
2
2
sin2x
的圖象向左平移
π
4
而得到.
其中正確的命題序號(hào)是
 
.(將你認(rèn)為正確的命題序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列三個(gè)命題:
①函數(shù)y=
1
2
ln
1-cosx
1+cosx
y=lntan
x
2
是同一函數(shù);
②若函數(shù)y=f(x)與y=g(x)的圖象關(guān)于直線y=x對(duì)稱,則函數(shù)y=f(2x)與y=
1
2
g(x)
的圖象也關(guān)于直線y=x對(duì)稱;
③若奇函數(shù)f(x)對(duì)定義域內(nèi)任意x都有f(x)=f(2-x),則f(x)為周期函數(shù).
其中真命題是( 。
A、①②B、①③C、②③D、②

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

14、已知直線m,n與平面α,β,給出下列三個(gè)命題:①若m∥α,n∥α,則m∥n;②若m∥α,n⊥α,則n⊥m;③若m⊥α,m∥β,則α⊥β其中正確命題的序號(hào)是
②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列三個(gè)命題:
①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logax(a>0且a≠1)的定義域相同;
②函數(shù)y=x3與y=3x的值域相同;
③函數(shù)y=
1
2
+
1
2x-1
y=lg(x+
x2+1
)
都是奇函數(shù).
其中正確命題的序號(hào)是
①③
①③
(把你認(rèn)為正確的命題序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2000•上海)設(shè)有不同的直線a、b和不同的平面α、β、γ,給出下列三個(gè)命題:
(1)若a∥α,b∥α,則a∥b.
(2)若a∥α,a∥β,則α∥β.
(3)若a∥γ,β∥γ,則a∥β.
其中正確的個(gè)數(shù)是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案